
 USBStem Datasheet
S61-USBSTEM

Revision 2.1 1 of 15 Revised October 14, 2016

Overview
The USBStem module is one of a family of 40-pin
BrainStem modules which share a common IO inter- face
meant for docking to breakout boards, prototyping boards
and OEM solutions on a 0.1” inch spaced header.

Features
• 3 Analog (ADC) Inputs at 12-bit resolution
• ADC sampling up to 200kS/s
• ADC bulk capture to RAM up to 3kS
• 15 GPIO Digital Input/Outputs (3.3 V)
• 1 DAC, 10-bit resolution
• 1 BrainStem 12c FM+ (1Mbit/s) bus

• I2C Fast Mode (FM, 400kbit/s) user peripheral
applications

• User, Link status, Power, Heartbeat LEDs
• 48kB persistent internal storage (4kB slots)
• 1 Internal 16kB RAM Storage Slot
• Small size footprint (50.8mm x 30.48mm x 14.03mm)

Applications
The BrainStem USBStem Module is a modular power
supply subsystem designed for supplying software con-
trollable voltage power rail to a device under test (DUT) in
automated testing environments and research and
development. Accurate voltage, temperature and cur- rent
rail measurements can be read through the Brain- Stem
API.

Description
The BrainStem USBStem Module is a core BrainStem
microcontroller module intended for general purpose

applications. The BrainStem USBStem Module can be
easily integrated into any system in order to provide a
collection of IO functions for automation systems, em-
bedded control systems and remote data collection. It
supports GPIO, I2C, A2D, and DAC. The module pro-
vides a flexible embedded virtual machine runtime with

simple programming interface to enable use with a wide
range of input and output devices. There is also a pow-
erful host-side C/C++ API which enables host-PC inter-
actions with the module and subordinate hardware de-

vices. All Acroname software and APIs are full featured on
all host platforms (Mac, Windows, Linux).

 USBStem Datasheet
S61-USBSTEM

Revision 2.1 2 of 15 Revised October 14, 2016

Absolute Maximum Ratings
Stresses beyond those listed under ABSOLUTE MAXIMUM RATINGS can cause permanent damage to the device. These are
stress ratings only and functional operation of the device at these or any other conditions beyond those indicated under
RECOMMENDED OPERATING CONDITIONS is not implied. Exposure to absolute-maximum rated conditions for extended
periods affects device reliability and may permanently damage the device.

Parameter Minimum Maximum Units

Input Voltage, Vsupply -0.5 4.6 V

Isupply current (per pin) 0.0 100mA A

Voltage to any IO pin -0.5 4.6 V

Voltage to any I2C pin 0.0 5.5 V

Table 1: Absolute Maximum Ratings

Recommended Operating Ratings
The values presented apply over the full operating temperature, otherwise specifications are at Ta = 25C

Parameter Conditions/Notes Minimum Typical Maximum Units

Input Voltage (VCC) 2.4 3.3 3.6 V

RTC Supply Voltage (VRTC) 2.1 3.3 3.6 V

Nominal Supply current Operating at 25C with
3.3Vcc

- 72.2 - mA

Supply current (Deep Sleep) Operating at 25C with
3.3Vcc

- 180.0 - uA

ADC Maximum Input Voltage -0.5 - 4.6 V

ADC Usable Input Voltage Range 0.0 - 3.3 V

DAC Voltage Output 0.0 - 3.3 V

Digital Input Voltage 0.0 - 5.5 V

GPIO Current, per pin 18.0 20.0 22.0 mA

GPIO Input Logic Low Threshold - - 1.0 V

GPIO Input Logic High Threshold 2.3 - V

GPIO Output Voltage 0.0 - 3.3 V

Operating Temperature 0.0 - 80.0 C

Unregulated Voltage Input Measurement 0.0 - 32.76 V

Table 2: Recommended Operating Ratings

 USBStem Datasheet
S61-USBSTEM

Revision 2.1 3 of 15 Revised October 14, 2016

Block Diagram

Table 3: System Block Diagram

BrainStem Module

UART0
UART0 Tx

UART0 Rx

UART1
UART1 Tx

UART1 Rx

Digital IODIO[14:0]

UART0 Traffic

Status

UART0 Tx Status

UART0 Rx Status

UART1 Traffic

Status

UART1 Tx Status

UART1 Rx Status

Watchdog

Status
Watchdog Status

12-bit A2D
A2D[2:0]

A2D[3]

Unregulated Voltage Measure

I2C0
I2C0 SDA

I2C0 SCL

I2C1
I2C1 SDA

I2C1 SCL

3.3V 3.3V

RTC Voltage RTC Voltage

µSD

µSD

ARM Processor

USB Connector

USB 5.0V

(VBUS)
5.0V Transport Power

USB Data Lines
USB D+

USB D-

USB Cable

 USBStem Datasheet
S61-USBSTEM

Revision 2.1 4 of 15 Revised October 14, 2016

Pin Functionality
All pin mapping functionality is described in the following table.

Figure 4: BrainStem USBStem pinout drawing.

BrainStem™

!♥

µSD

UART0 TX Output

UART0 RX Input

UART0 TX LED Output

UART0 RX LED Output

UART1 TX Output

UART1 RX Input

UART1 TX LED Output

UART1 RX LED Output

ADC2

ADC1

ADC0

ADC3/DAC

User (I2C1) SCL

User (I2C1) SDA

DIO12

DIO13

DIO14

Reset (Active Low)

Ground

3.3V Input

RTC Power Input

Unregulated Voltage Input

BrainStem Bus (I2C0) SCL

BrainStem Bus (I2C0) SDA

Watchdog status output

DIO11

DIO10

DIO9

DIO8

DIO7

DIO6

DIO5

DIO4

DIO3

DIO2

DIO1

DIO0

USBStem

USB

mini-B

USB VBUS (5.0V) Passthrough

USB D+ Passthrough (T1)

USB D- Passthrough (T0)

 USBStem Datasheet
S61-USBSTEM

Revision 2.1 5 of 15 Revised October 14, 2016

Pin Description Notes

1 Reset Logic low asserts reset

2 DIO 14

3 DIO 13

4 DIO 12

5 I2C1 SDA Hardware pull up is included

6 I2C1 SCL Hardware pull up is included

7 ADC3/DAC Analog input and output capable

8 ADC0 Analog input only

9 ADC1 Analog input only

10 ADC2 Analog input only

11 UART1 Rx LED status indication

12 UART1 Tx LED status indication

13 UART1 Rx

14 UART1 Tx

15 UART0 Rx LED status indication

16 UART0 Tx LED status indication

17 UART0 Rx

18 UART0 Tx

19 USB D+ passthrough

20 USB D- passthrough

21 Ground

22 VCC Recommended 3.3V. See electrical characteristics

23 RTC Voltage input Recommended 3.3V. See electrical characteristics

24 Voltage Transport 5.0V from USB VBUS is passed through from mini-b connector

25 Voltage Unregulated
Measurement

26 I2C0 SCL Hardware pull up is included. This is primarily used as BrainStem network bus

27 I2C0 SDA Hardware pull up is included. This is primarily used as BrainStem network bus

28 Watchdog status pin

29 DIO 11

30 DIO 10

31 DIO 9

32 DIO 8

 USBStem Datasheet
S61-USBSTEM

Revision 2.1 6 of 15 Revised October 14, 2016

33 DIO 7

34 DIO 6

35 DIO 5

36 DIO 4

37 DIO 3

38 DIO 2

39 DIO 1

40 DIO 0

 USBStem Datasheet
S61-USBSTEM

Revision 2.1 7 of 15 Revised October 14, 2016

Module Hardware and Software Default Values
The USBSTEM module utilizes a subset of BrainStem entity implementations that are specific to the hardware’s capabilities.
Table 5: USBSTEM Hardware and Software Default Values details the BrainStem API entities and macros used to interface to
the USBSTEM module. For C and C++ developers, these macros are defined in aUSBStem.h from the BrainStem
development package. For Python development, the module USBStem class defines the extent of each entity array.

While the BrainStem API entities define the full potential functionality of a given interface, not all features are supported by the
USBSTEM module. Table 5: USBSTEM Hardware and Software Default Values defines each of the options implemented with
each entity, which varies by entity index. Calling an unsupported entity option will return an appropriate error (e.g.:
aErrInvalidEntity, aErrInvalidOption, aErrMode, or aErrUnimplemented) as defined in
aError.h for C and C++ and the Result class in Python.

Parameter Index Macro Name or Implemented Options Notes

Module Definitions:

Module Base Address 2 aUSBSTEM_MODULE See aUSBStem.h

Entity Class Definitions:

digital Entity Quantity 15 aUSBSTEM_NUM_DIG

analog Entity Quantity 4 aUSBSTEM_NUM_A2D

i2c Entity Quantity 2 aUSBSTEM_NUM_I2C

clock Entity Quantity 1

Store Entity Quantity 3 aUSBSTEM_NUM_STORES

system Entity Quantity 1

timer Entity Quantity 8 aUSBSTEM_NUM_TIMERS

Table 5: USBSTEM Hardware and Software Default Values1

1 Refer to aUSBStem.h within the BrainStem Development Kit download for actual file.

 USBStem Datasheet
S61-USBSTEM

Revision 2.1 8 of 15 Revised October 14, 2016

Capabilities and Interfaces
The USBSTEM module software is built on Acroname’s
BrainStem technology. The module adheres to the
BrainStem protocol on I2C and uses BrainStem software
APIs. For the most part, functionality that is unique to the
USBSTEM is described in the following sections; refer to
Table 7: Supported USBSTEM BrainStem Entity API
Methods for a complete list of all available API functionality.
All shortened code snippets are loosely based on the C++
method calls – Python and Reflex are virtually the same.
Please consult the BrainStem Reference for
implementation details2.

System Entities
Every BrainStem module includes a single System Entity.
The System Entity allows access to configuration settings
such as the module address, input voltage, control over the
user LED and many more.

Saving Entity Settings
Some entities can be configured and saved to non-volatile
memory. This allows a user to modify the startup and
operational behavior for the USBSTEM away from the
factory default settings. Saving system settings preserves
the settings to become the new default. Most changes to
system settings require a save and reboot before taking
effect. Use the following command to save changes to
system settings before reboot:

stem.system.save()

Saved Configurations

Software Offset I2C Rate

Router Address I2C Pullup State

Heartbeat Rate Boot Slot

Store Entities
Every BrainStem module includes several Store entities
and on-board memory slots to load Reflex files (for details
on Reflex, see BrainStem Reference online
http://acroname.com/entities/index.html). One Reflex file
can be stored per slot. Store[0] refers to the internal
memory, with 12 available slots, and store[1] refers to
RAM, with 1 available slot.

Digital Entities
The USBSTEM has fifteen (15) digital input/outputs (DIO)
controlled by the digital entity. Each DIO is controllable via

software and is independently current limited for both
source and sink currents.

All DIO are input and output capable.
stem.digital[0].setConfiguration(mode)
stem.digital[0].getConfiguration(mode)

The mode parameter is an integer that correlates to the
following:

• 0 (digitalConfigurationInput)
• 1 (digitalConfigurationOutput)
• 2 (digitalConfigurationRCServoInput)
• 3 (digitalConfigurationRCServoOutput)
• 4 (digitalConfigurationHiZ)

If a digital pin is configured as an output, setting the digital
logic level:

stem.digital[0].setState(level)

If a digital pin is configured as an input, reading the digital
logic level:

stem.digital[0].getState(level)

If a digital pin is configured in HighZ mode its internal
circuitry has been disconnected to create a high
impedance. There are no functions that can act on this
configuration.

Configuring a digital pin as an RCServo input or output
requires the use of the RCServo Entity.

Digital Input Output HighZ RCServo

DIO0 Yes Yes Yes Input

DIO 1 Yes Yes Yes Input

DIO 2 Yes Yes Yes Input

DIO 3 Yes Yes Yes Input

DIO 4 Yes Yes Yes Output

DIO 5 Yes Yes Yes Output

DIO 6 Yes Yes Yes Output

DIO 7 Yes Yes Yes Output

DIO 8 Yes Yes Yes None

DIO 9 Yes Yes Yes None

DIO 10 Yes Yes Yes None

DIO 11 Yes Yes Yes None

DIO 12 Yes Yes Yes None

DIO 13 Yes Yes Yes None

 USBStem Datasheet
S61-USBSTEM

Revision 2.1 9 of 15 Revised October 14, 2016

DIO 14 Yes Yes Yes None
Table 6: Digital IO pin configurations

Analog Entities
The USBSTEM has three (3) dedicated analog inputs
(ADC) and one (1) analog input that can also be configured
as an output (DAC). All controlled by the analog entity.
Each analog is controllable via software and is
independently current limited for both source and sink
currents.

The analog inputs are connected to a 12-bit ADC, and
return a value between 0 and 65535, corresponding to a
range of 0-3.3V. The analog output is connected to a 10-
bit DAC and takes a set value between 0 and 65535,
corresponding to a voltage range of 0-3.3V.

For the analog output (analog[3]), setting the DAC value:
stem.analog[0].setValue(value)

For the analog inputs (analog[0-3]), reading the ADC value:
stem.analog[0].getValue(value)

The MTM-USBSTEM’s ADC’s also have the ability of being
captured in bulk based on a user defined sample rate. See
“Calculating the actual Bulk Capture Sample Rate” for
additional information.

I2C Entities
The USBSTEM includes access to two separate I2C
busses: one operating at a set 1Mbit/s rate, and the other
at 400kbits/s.

NOTE: The 1Mbit/s bus, while user-accessible, is also
used for primary BrainStem communication so there may
be other, non-user-initiated traffic as well, particularly with
linked BrainStem units.

The maximum data size for individual read and write
operations on an I2C bus through the BrainStem API is 20
bytes. Sending more than 20 bytes of information has to be
done as an iterated sequence. For example, sending 2
bytes (0xBEEF) through the I2C bus to a device with an
address 0x42 would be written:

stem.i2c.write(0x42, 2, 0xBEEF)

Reading 2 bytes of data from a device with an address
0x42 would be written:

stem.i2c.read(0x42, 2, buffer)

Where buffer would be a char array in C++.

Each I2C bus also includes, as a convenience, software-
controllable 330W pull-up resistors on the SDA and SCL
lines, disabled by default. When using the USBSTEM in a
linked system (communicating over the 1Mbit/s bus), only a
single set of pull-ups along the bus should be enabled in
order for the I2C bus to work properly (if more than one set
is enabled, the lines cannot be pulled low for
communication). Similarly, when using a single 40 pin
device to communicate with an external device over the I2C
bus, either the internal pull-ups can be enabled, or external
hardware pull-ups added.

stem.i2c.setPullUp(bEnable)

The bEnable parameter is an integer that correlates to the
following:

• 0 (I2C pull-ups off)
• 1 (i2cSetPullup)

RCServo Entities
The USBStem board is equipped with four (4) RCServo
inputs and four (4) RCServo outputs. The RCServo entity
is an overload of the Digital Entity and thus requires proper
configuration before this entity can be enabled.

This entity provides a pulsed signal based on the RC Servo
standard. Consisting of a period lasting 20ms and high
pulse time between 1-2ms. The high time corresponds to a
specific position determined by the specific servo being
used.

When operating as an RCServo Input you can enable the
functionality and then get the position as needed.

stem.RCServo[0].setEnable(bool)
stem.RCServo[0].getPosition(position)

When operating as an RCServo Output you can enable the
functionality and then set the position as needed.

stem.RCServo[4].setEnable(bool)
stem.RCServo[4].setPosition(position)

Clock Entities
The USBSTEM includes a real-time, user-configurable
clock entity tracking a time object consisting of year,
month, day-of-the-month, hour, minute and second. These
values can be set independently:

stem.clock.setYear(year)
stem.clock.setSecond(second)

They can also be read independently:
stem.clock.getYear(year)
stem.clock.getSecond(second)

 USBStem Datasheet
S61-USBSTEM

Revision 2.1 10 of 15 Revised October 14, 2016

USBSTEM Supported Entity Methods Summary
Detailed entity class descriptions can be found in the BrainStem Reference (http://acroname.com/entities/index.html). A
summary of USBSTEM class options are shown below. Note that when using Entity classes with a single index (0), the index
parameter can be dropped. For example:

stem.system[0].setLED(1) à stem.system.setLED(1)

Entity Class Entity Option Variable(s) Notes

digital[0-14] setConfiguration

 getConfiguration

 setState

 getState

i2c[0-1] write

 read

 setPullup
Disabled by default. I2C communication
requires a single set of pull-ups enabled
across the bus.

analog[0-3] getValue

 getVoltage

 setBulkCaptureSampleRate

getBulkCaptureSampleRate

 setBulkCaptureNumberOfSamples

 getBulkCaptureNumberOfSamples

 initiateBulkCapture

 getBulkCaptureState

 getConfiguration

analog[3] setValue

 setConfiguration

clock[0]

setYear

 getYear

 setMonth

 getMonth

 setDay

 getDay

 setHour

 getHour

 setMinute

 getMinute

 setSecond

 USBStem Datasheet
S61-USBSTEM

Revision 2.1 11 of 15 Revised October 14, 2016

 getSecond

store[0-2] getSlotState

 loadSlot

 unloadSlot

 slotEnable

 slotDisable

 slotCapacity

 slotSize

system[0] save

 reset

 setLED

 getLED

 setBootSlot

 getBootSlot

 getInputVoltage

 getVersion

 getModuleBaseAddress

 getModuleSoftwareOffset

 setModuleSoftwareOffset

 setHBInterval

 getHBInterval

 getRouterAddressSetting

 getModule

 getSerialNumber

 setRouter

 getRouter

 getModel

timer[0-8] getExpiration

setExpiration

 getMode

 setMode

Table 7: Supported USBSTEM BrainStem Entity API Methods2

2 See BrainStem software API reference at https://acroname.com/reference/ for further details about all BrainStem API methods
and information.

 USBStem Datasheet
S61-USBSTEM

Revision 2.1 12 of 15 Revised October 14, 2016

Mechanical
Dimensions are shown in inches [mm]. 3D CAD models are available through the USBSTEM product page’s Downloads section.

Figure 1: USBStem Mechanical

�
�����
���� �

�
�����
��� �

�
����
��� �

�
�����
���� �

����
��� �7<3

�
�����
���� �

�
�����
���� �

%UDLQ6WHP�86%�&RUH

%UDLQ6WHPB86%B&RUH

6+((7���2)��6&$/(����� :(,*+7��

5(9':*���12�

$
6,=(

7,7/(�

� � � � �

 USBStem Datasheet
S61-USBSTEM

Revision 2.1 13 of 15 Revised October 14, 2016

Module Address Hardware Offset Configuration
A hardware offset is one of two ways to modify the devices Module/I2C address. For detailed information on BrainStem
networking see the reference guide.

1K

HW	OFFSET	0

HW	OFFSET	1

HW	OFFSET	2

HW	OFFSET	3

1K 1K 1K

 USBStem Datasheet
S61-USBSTEM

Revision 2.1 14 of 15 Revised October 14, 2016

Calculating the actual Bulk Capture Sample Rate
Step 1: Calculate Clock Divisor

Cd = Clock Divisor (This value must be rounded up to the nearest whole number

Cf = Clock Frequency = 96,000,000 Hz

n = Number of cycles required for Analog conversion = 65.

Rf = Requested Frequency in Hz

Cd = Cf / (n * Rf)

Step 2: Calculate Actual Bulk Capture Sample Rate

 Sr = Sample Rate

Cf = Clock Frequency = 96,000,000 Hz

n = Number of cycles required for Analog conversion = 65.

Cd = Clock Divisor (Calculated in Step 1)

Sr = Cf / (n * Cd)

 USBStem Datasheet
S61-USBSTEM

Revision 2.1 15 of 15 Revised October 14, 2016

Document Revision History
All major documentation changes will be marked with a dated revision code

Revision Date Engineer Description

1.0 July 7, 2014 MJK Initial Revision

1.1 August 27, 2014 ECM Updated pin mapping, absolute and recommended
ratings table

2.0 September 14, 2016 RMN Converted .tex to .docx

2.1 October 18, 2016 RMN Added Bulk Capture information

