
 MTM-IO-Serial Datasheet

S62-MTM-IO-Serial

Revised 1.13 1 of 23 Revised September 2024

Overview

The Acroname® MTM-IO-Serial module (S62-MTM-IO-
SERIAL), as part of Acroname’s MTM (Manufacturing Test
Module) product series, is a software-controlled USB 2.0 hub,
designed for MTM-based manufacturing or R&D test systems.
The MTM-IO-Serial allows MTM system designers to easily and
modularly add USB 2.0 connectivity as well as serial UART and
GPIO functions at two variable IO levels.

Built using Acroname’s industry-proven and well-adopted
BrainStem® technology, resources on the MTM-IO-Serial are
controlled via Acroname's powerful and extensible BrainStem
technology and software APIs.

Typical Application

– Manufacturing functional testing
– Validation testing
– Automated test development
– Embedded system development
– Firmware loading
– Serial communications
– USB switching and control

System Features

– 4 downstream USB 2.0 ports, software controlled Hi-Z disable
– 2 independent 1.8-5.0V adjustable high-current voltage rails,

current limited to 150mA
– 4 adjustable-voltage serial UART ports (2 per adjustable rail)

software controlled Hi-Z disable
– 4 adjustable-voltage digital GPIO (4 per adjustable rail)
– All GPIOs overvoltage and overcurrent protected
– 1 fixed high-current 5.0V output, current limited to 150mA
– 1 downstream USB 2.0 port on edge connector, always on for

daisy-chaining multiple modules over USB
– 1 downstream USB 2.0 port type-A connector, always on for

daisy-chaining multiple modules over USB
– 1 BrainStem I2C FM+ (1Mbit/s) bus

Description

As part of Acroname’s MTM series, the MTM-IO-Serial module
is a key component for manufacturing test for electronic devices
using a USB 2.0 interface, serial UART and/or one or more IO
interface voltages. Details on the MTM development platform
architecture, BrainStem interface, and APIs are at
https://acroname.com/reference.

The MTM-IO-Serial implements an onboard BrainStem
controller running an RTOS (Real-Time Operating System),
which provides a USB host connection, independent operating
capability and the BrainStem interface, for control of the MTM
resources identified in this datasheet (Rail0, Rail1, GPIO,
UART, USB CHx, etc.).

The MTM-IO-Serial provides three key functions via the
BrainStem API interface: (1) a 4-port programmable USB 2.0
hub with ability to separate enable/disable capability for data
lines and Vbus connections; (2) two adjustable IO rails; (3) two
banks of UART interfaces and GPIO pins, both of which are
associated with an adjustable IO rail.

The serial UARTs are placed into two groups of independent,
software-adjustable voltage rails with associated digital
input/output (DIO) pins with logic levels based on rail voltage.
This configuration allows the MTM-IO-Serial module UARTs and
GPIOs to be used to interface to DUTs with two different voltage
planes.

Within the MTM platform architecture, the MTM-IO-Serial
module can operate either independently or as a component in
a larger network of MTM modules. Each MTM-IO-Serial is
uniquely addressable and controllable from a host by connecting
via the onboard USB connection, the card-edge USB input or
through other MTM modules on the local MTM/BrainStem I2C
bus.

Acroname’s BrainStem link is established over the selected
input connection. The BrainStem link allows a connection to the
onboard controller and access to the available resources in the
MTM-IO-Serial. The MTM-IO-Serial can then be controlled via a
host running BrainStem APIs or it can operate independently by
running locally embedded, user-defined programs based on
Acroname’s BrainStem Reflex language in the RTOS.

IMPORTANT NOTE

The MTM-IO-SERIAL utilizes a PCIe connector interface but is for use strictly

in MTM-based systems. It should never be installed in a PCI slot of a host

computer directly. Insertion into a PC or non-MTM system could cause

damage to the PC.

https://acroname.com/reference

 MTM-IO-Serial Datasheet

S62-MTM-IO-SERIAL

Revised 1.13 2 of 23 Revised September 2024

Absolute Maximum Ratings

Stresses beyond those listed under ABSOLUTE MAXIMUM RATINGS cause permanent damage to the device. These are stress
ratings only and functional operation of the device at these or any other conditions beyond those indicated under RECOMMENDED
OPERATING CONDITIONS is not implied. Exposure to absolute-maximum-rated conditions for extended periods affects device
reliability and may permanently damage the device.

Voltage Rating Minimum Maximum Units

Input Voltage, Vsupply -14.7 14.7 V

I2C0 SDA, SCL -0.5 14.7 V

UART TX/RX -0.5 6.5 V

DIO 0-7 -0.5 6.5 V

Module Address 0-3 -0.5 14.7 V

Reset -0.5 14.7 V

USB D+, D- -0.5 5.5 V

USB Vbus -0.5 6.0 V

Rail 0-2 -0.5 14.7 V
Table 1: Absolute Maximum Ratings

Current Rating Minimum Maximum Units

Input Current, Isupply 0.0 5.5 A
Table 2: Absolute Maximum Current Ratings

The MTM system is designed to be used in a system where Vsupply is the highest voltage connected to all MTM modules. Each
module is designed to withstand Vsupply continuously connected to all IOs, excepting those specified above, including accidental
reverse polarity connection between Vsupply and ground (0V). As with all products, care should be taken to properly match interface
voltages and use a well architected current-return path to ground for the targeted application.

Handling Ratings

Parameter Conditions/Notes Minimum Typical Maximum Units

Ambient Operating Temperature, TA Non-Condensing 0 25 70 °C

Relative Humidity Range Non-Condensing 0 - 95 %RH

Storage Temperature, TSTG -10 - +85 °C

Electrostatic Discharge, VESD IEC 61000-4-2, level 4,
contact discharge to
edge connector interface

-8 - +8 kV

Table 3: Handling Ratings

Recommended Operating Ratings

Specifications are valid at 25°C unless otherwise noted. Indoor application use only.

Parameter Conditions/Notes Minimum Typical Maximum Units

Input Voltage, Vsupply 6.0 - 12.0 V

Voltage to any IO pin 0 - 3.3 V

Voltage to any I2C pin 0 - 3.3 V

Relative Humidity Range Non-Condensing 5 - 95 %RH
Table 4: Recommended Operating Ratings

 MTM-IO-Serial Datasheet

S62-MTM-IO-SERIAL

Revised 1.13 3 of 23 Revised September 2024

Block Diagram

Figure 1: MTM-IO-Serial Block Diagram

 MTM-IO-Serial Datasheet

S62-MTM-IO-SERIAL

Revised 1.13 4 of 23 Revised September 2024

Typical Performance Characteristics

Specifications are valid at 25°C unless otherwise noted. Indoor application use only. Sample rates are typically limited by the USB
throughput of the host operating system except where bulk capture is supported.

Parameter Conditions/Notes Minimum Typical Maximum Units

Base Current Consumption, Isupply Vsupply = 6V
Vsupply = 12V

-
-

135
343

-
-

mA

Reset Low Threshold - 1.2 - V

I2C SDA, SCL Pins - 3.3 - V

UART Tx/Rx Logic High, VIH 0.65 × Vrail - - V

UART Tx/Rx Logic Low, VIL - - 0.35 × Vrail V

Digital Input Logic High, VIH 0.65 × Vrail - - V

Digital Input Logic Low, VIL - - 0.35 × Vrail V

Digital Input Resistance Internal Pull-down - 100 - kΩ

Rail 0 Output Voltage, Vrail0 2% 4.9 5.0 5.1 V

Rail 1-2 Output Voltage, Vrail1, Vrail2 Software controlled, 2% 1.764 - 5.1V V

Rail 0,1,2 Switch Output Current Current Limited 100 150 200 mA

Rail 1-2 Voltage Error Vrail 2.5V
Vrail < 2.5V

-
-

-
-

1
2

%

Rail 1-2 Voltage Vrail = 1.8V; 2%

Vrail = 3.3V; 1%

Vrail = 4.0V; 1%

1.764
3.267
4.950

1.800
3.300
5.000

1.836
3.333
5.050

V

Digital Output Drive Current1 Output high; short to GND - 20.0 30.0 mA

Digital Output Sink Current Output low; short to Vrail - -10.0 -30.0 mA

Digital Output Short Duration Output high - Infinite - hours

Digital Output Overvoltage Vsupply on pin - Infinite - hours

Digital Sample Rate2 via USB link, C++
Reflex

-
-

1000
8200

-
-

Hz
Hz

Digital Output Jitter Using Reflex only
Reflex w/ BrainStem load

-
-

-
-

25
100

µs
µs

Digital cmdCAPTURE Frequency
Capture

 0 - 1000 kHz

USB Vbus current limit 500 500 800 mA
Table 5: Typical Performance Characteristics

1 It is not recommended to continuously apply more than Vrail to any DIO or UART pin.
2 Host dependent, test was done as a single instruction, subsequent instructions may affect performance.

 MTM-IO-Serial Datasheet

S62-MTM-IO-SERIAL

Revised 1.13 5 of 23 Revised September 2024

 MTM-IO-Serial Datasheet

S62-MTM-IO-SERIAL

Revised 1.13 6 of 23 Revised September 2024

 MTM-IO-Serial Datasheet

S62-MTM-IO-SERIAL

Revised 1.13 7 of 23 Revised September 2024

Pinout Descriptions

WARNING: MTM modules use a PCIe connector interface that is common in most desktop computers; however, they are NOT
intended nor designed to work in these devices. Do NOT insert this product into any PCIe slot that wasn't specifically designed for
MTM modules, such as a host PC. Installing this module into a standard PCI slot will result in damage to the module and the PC.

The MTM edge connector pin assignments are shown in the following table. Please refer to Table 4: Recommended Operating
Ratings for appropriate signal levels.

Pins Common to all MTM Modules

Side A Edge Connector Side A Description Side B Edge Connector Side B Description

1 GND 1 Input Voltage, Vsupply

2 GND 2 Input Voltage, Vsupply

3 GND 3 Input Voltage, Vsupply

4 GND 4 Input Voltage, Vsupply

5 Reset 5 Input Voltage, Vsupply

6 GND 6 Reserved, Do Not Connect

7 GND 7 Reserved, Do Not Connect

8 I2C0 SCL 8 GND

9 I2C0 SDA 9 GND

10 GND 10 UART0 Transmit

11 GND 11 UART0 Receive

12 Module Address Offset 0 12 Module Address Offset 2

13 Module Address Offset 1 13 Module Address Offset 3
Table 6: Pins Common to all MTM Modules

B1 A1

 MTM-IO-Serial Datasheet

S62-MTM-IO-SERIAL

Revised 1.13 8 of 23 Revised September 2024

Pins Specific to MTM-IO-Serial

Side A Edge Connector Side A Description Side B Edge Connector Side B Description

14 Reserved, Do Not Connect 14 USB Upstream Data +

15 UART2 Tx 15 USB Upstream Data -

16 UART2 Rx 16 UART1 Tx

17 UART3 Tx 17 UART1 Rx

18 UART3 Rx 18 Digital IO 0

19 Reserved, Do Not Connect 19 Digital IO 1

20 Reserved, Do Not Connect 20 Digital IO 2

21 Reserved, Do Not Connect 21 Digital IO 3

22 Reserved, Do Not Connect 22 Digital IO 4

23 Reserved, Do Not Connect 23 Digital IO 5

24 Reserved, Do Not Connect 24 Digital IO 6

25 Reserved, Do Not Connect 25 Digital IO 7

26 Reserved, Do Not Connect 26 Reserved, Do Not Connect

27 Reserved, Do Not Connect 27 Reserved, Do Not Connect

28 Reserved, Do Not Connect 28 Reserved, Do Not Connect

29 Reserved, Do Not Connect 29 Reserved, Do Not Connect

30 Reserved, Do Not Connect 30 Reserved, Do Not Connect

31 Rail 1 Output 31 Rail 2 Output

32 Reserved, Do Not Connect 32 Rail 0 Output

33 GND 33 USB2 Vbus

34 USB0 D+ 34 USB2 D-

35 USB0 D- 35 USB2 D+

36 USB0 Vbus 36 GND

37 GND 37 USB3 Vbus

38 USB1 D+ 38 USB3 D-

39 USB1 D- 39 USB3 D+

40 USB1 Vbus 40 GND

41 Reserved, Do Not Connect 41 Reserved, Do Not Connect

42 Reserved, Do Not Connect 42 USB Edge D-

43 Reserved, Do Not Connect 43 USB Edge D+

44 Reserved, Do Not Connect 44 GND

45 Vsupply 45 GND

46 Vsupply 46 GND

47 Vsupply 47 GND

48 Vsupply 48 GND

49 Vsupply 49 GND
Table 7: Pins Specific to MTM-IO-Serial

 MTM-IO-Serial Datasheet

S62-MTM-IO-SERIAL

Revised 1.13 9 of 23 Revised September 2024

Module Hardware and Software Default Values

Software Control

The MTM-IO-Serial module firmware is built on Acroname’s BrainStem technology and utilizes a subset of BrainStem entity
implementations that are specific to the hardware’s capabilities. Table 8 details the BrainStem API entities and macros used to
interface with the MTM-IO-Serial module. For C and C++ developers, these macros are defined in aMTMIOSerial.h from the
BrainStem development package. For Python development, the module MTMIOSerial class properly defines the extent of each
entity array.

While Table 8 lists the BrainStem API entities available for this module, not all entity methods are supported by the MTM-IO-Serial.
For a complete list of supported entity methods, see Table 16. Note that available method options may vary by entity index, as well
as by entity, and calling an unsupported entity option will return an appropriate error (e.g.: aErrInvalidEntity,

aErrInvalidOption, aErrMode, or aErrUnimplemented) as defined in aError.h for C and C++ and the

Result class in Python.

All API example code snippets that follow are pseudocode loosely based on the C++ method calls - Python and Reflex are similar.
Please consult the BrainStem Reference for specific implementation details7

Parameter Index Macro Name or Implemented Options Notes

Module Definitions:

 Module Base Address 8 aMTMIOSERIAL_MODULE_BASE_ADDRESS See aMTMIOSerial.h

Entity Class Definitions:

 digital Entity Quantity 8 aMTMIOSERIAL_NUM_DIGITALS

 i2c Entity Quantity 1

 rail Entity Quantity 3 aMTMIOSERIAL_NUM_RAILS

 5.0V Rail (RAIL0) 0 aMTMIOSERIAL_5VRAIL

 Adjustable Rail (RAIL1) 1 aMTMIOSERIAL_ADJRAIL1

 Adjustable Rail (RAIL2) 2 aMTMIOSERIAL_ADJRAIL2

 UART Entity Quantity 4 aMTMIOSERIAL_NUM_UART

 USB Entity Quantity 1 aMTMIOSERIAL_NUM_USB

 Store Entity Quantity 2 aMTMIOSERIAL_NUM_STORES

 system Entity Quantity 1

 timer Entity Quantity 8 aMTMIOSERIAL_NUM_TIMERS

 app Entity Quantity 4 aMTMIOSERIAL_NUM_APPS

 pointer Entity Quantity 4 aMTMIOSERIAL_NUM_POINTERS

 servo Entity Quantity 8 aMTMIOSERIAL_NUM_SERVOS

 signal Entity Quantity 5 aMTMIOSERIAL_NUM_SIGNALS
Table 8: MTM-IO-Serial Hardware and Software Default Values3

3 Refer to aMTMIOSerial.h within the BrainStem Development Kit download for actual file.

 MTM-IO-Serial Datasheet

S62-MTM-IO-SERIAL

Revised 1.13 10 of 23 Revised September 2024

Capabilities and Interfaces

BrainStem Link and Module Networking

A BrainStem link can be established that will give the user
access to the resources available on the MTM-IO-Serial. The
module can then be controlled via a host running BrainStem
APIs or operated independently by running locally embedded,
user-defined programs based on Acroname’s BrainStem Reflex
language in the RTOS.

A BrainStem link to the MTM-IO-Serial can be established via
one of three (3) interfaces: the onboard USB connection, the
card-edge USB connection, or through another MTM module
using the BrainStem protocol (more on this interface below). For
the USB connection options, once the MTM-IO-Serial is
attached to a host machine, a user can connect to it via software
API:

 stem.link.discoverAndConnect(linkType,

serialNumber, modelNumber)

The MTM-IO-Serial can also work within a network of other
Brainstem modules, such as in a test fixture, to give access to
the capabilities of all networked modules. On the MTM platform,
networked modules communicate using the Brainstem protocol,
which is transmitted over I2C. Each MTM-IO-Serial is uniquely
addressable via hardware or software to avoid communication
conflicts on the I2C bus. A software offset can be applied as
follows:

 stem.system.setModuleSoftwareOffset(address)

Module Address Hardware Offset
Configuration

A hardware offset allows a user to modify the module’s address
on the BrainStem network. Using hardware offset pins is useful
when more than one of the same module type is installed on a
single BrainStem network. Applying a different hardware offset
to each module of the same type in one network allows for all
the modules to seamlessly and automatically configure the
network for inter-module communication. Further, modules can
be simply swapped in and out of the network without needing to
pre-configure a module’s address before being added to a
network. Finally, when a system has more than one of the same
module type in a network, the module address hardware offset
can be used to determine the module’s physical location and
thus its interconnection and intended function. For detailed
information on BrainStem networking see the BrainStem
Reference7.

Each hardware offset pin can be left floating or pulled to ground
with a 1kΩ resistor or smaller (pin may be directly shorted to
ground). Pin states are only read when the module boots, either
from a power cycle, hardware reset, or software reset. The

hardware offset pin states are treated as a bit state within a 4bit
number. This number is multiplied by 2 and added the to the
module’s base address. The hardware offset calculation is
detailed in the following table:

HW Offset Pin Address
Offset

Module
Base

Address

Final
Module
Address

3 2 1 0

NC NC NC NC 0 4 4

NC NC NC 1 2 4 6

NC NC 1 NC 4 4 8

NC 1 NC NC 8 4 12

1 NC NC NC 16 4 20

1 NC NC 1 (1+8) * 2 4 22
Table 9: Module Address Hardware Offset Examples

Upstream USB Connectivity Options

The MTM-IO-Serial supports upstream USB connections (to
communicate to a host PC) via the mini-B connector, or through
pins B14 and B15 of the PCIe edge connector. The module
defaults to using the edge connector and will switch to the mini-
B connector if 5V is present on Vbus at the mini-B connector.

System Entities

Every BrainStem module includes a single System Entity. The
System Entity allows access to configuration settings such as
the module address and I2C rate, measurements such as input
voltage, control over the user LED, and many more.

Saving Entity Settings

Some entities can be configured and saved to non-volatile
memory. This allows a user to modify the startup and
operational behavior for the MTM-IO-Serial away from the
factory default settings. Saving system settings creates a new
default and often requires a reboot of the MTM-IO-Serial for
changes to take effect; see Table 10: Entity Values Saved by
system.save() for relevant settings. Use the following command
to save changes to system settings before reboot:

stem.system.save()

Saved Configurations

Module Software Offset I2C Rate

Router Address I2C Pullup State

Heartbeat Rate Boot Slot
Table 10: Entity Values Saved by system.save()

Store Entities

Every BrainStem module includes several Store entities and
onboard memory slots to load Reflex files (for details on Reflex,
see BrainStem Reference7). One Reflex file can be stored per

 MTM-IO-Serial Datasheet

S62-MTM-IO-SERIAL

Revised 1.13 11 of 23 Revised September 2024

slot. Store[0] refers to the internal flash memory, with 12
available slots, and store[1] refers to RAM, with 1 available slot.

Digital Entities

The MTM-IO-Serial has eight (8) digital input/outputs (DIO)
controlled by the digital entity.

The digital inputs and outputs on the MTM-IO-Serial module
have software-adjustable logic levels and are limited to sourcing
or sinking 20 mA. The DIO are split into two groups (DIO0-3

and DIO4-7) and the logic level for all four pins within each

group derive from the same voltage rail (RAIL1 or RAIL2).

While each pin can independently sink 20mA, the total DIO
source current from a single rail is 20mA. A plot of expected
output voltage as a function of current sourcing and a plot of
current sinking ability as a function of applied voltage is shown
in the Typical Performance Characteristics section. Because the
current sourcing ability applies to the internal rail of each group,
the voltage output level of the entire group can be affected by
one or more pins sourcing or sinking high levels of current. Note:
it is not recommended to apply more than the configured rail
voltage to any DIO pin.

All DIO are input and output capable:

stem.digital[0].setConfiguration(mode)

stem.digital[0].getConfiguration(mode)

The mode parameter is an integer that correlates to the
following:

Value Configuration

0 Input

1 Output

2 RC Servo Input

3 RC Servo Output

6 Signal Output

7 Signal Input
Table 11: Digital IO Configuration Values

Example: If a digital pin is configured as an output, set the digital
logic state:

stem.digital[0].setState(state)

Example: If a digital pin is configured as an input, read the digital
logic state:

stem.digital[0].getState(state)

The logic level for a given pin follows its rail and is controllable
as explained in the Rail Entities section below. See Table 12:
Digital IO to determine the corresponding rail for each pin.

Every DIO pin also has an internal pull-down resistor when
configured as an input.

Configuring a digital pin as an RCServo input or output requires
use of the RCServo Entity. The RCServo input and output
modes are only available on a subset of the digital pins. Refer
to Table 12: Digital IO for a complete list. Note: Signal entity is
covered in a subsequent section

Figure 2: DIO and voltage rail grouping

 MTM-IO-Serial Datasheet

S62-MTM-IO-SERIAL

Revised 1.13 12 of 23 Revised September 2024

Pin Input Output Rail Hi-Z Servo Signal

DIO 0 Yes Yes 1 No Input Input

DIO 1 Yes Yes 1 No Input Input / Output

DIO 2 Yes Yes 1 No Input Input / Output

DIO 3 Yes Yes 1 No Input Input / Output

DIO 4 Yes Yes 2 No Output Input / Output

DIO 5 Yes Yes 2 No Output -

DIO 6 Yes Yes 2 No Output -

DIO 7 Yes Yes 2 No Output -
Table 12: Digital IO Pin Configurations

The DIOs are controlled with an array of the BrainStem digital
class. The MTM-IO-Serial module implements a subset of the
digital class for each DIO index. The implemented entity options
for digital class entity index are summarized below.

I2C Entities

The MTM-IO-Serial includes access to two separate I2C buses:
one operating at a set 1Mbit/s rate, and the other at 400kbits/s.

Note: The 1Mbit/s bus, while user-accessible, is also used for
BrainStem network communication so there may be other, non-
user-initiated traffic when other BrainStem modules are linked.

Example: Sending 2 bytes (0xABCD) through the I2C bus to a
device with address 0x42:

stem.i2c.write(0x42, 2, 0xABCD)

Example: Reading 2 bytes of data from a device with address
0x42:

stem.i2c.read(0x42, 2, buffer)

Where buffer would be a char array in C++.

The maximum data size for individual read and write operations
on an I2C bus through the BrainStem API is 20 bytes. Sending
more than 20 bytes of information must be done as an iterated
sequence.

Each I2C bus also includes 330 pull-up resistors on the SDA
and SCL lines, disabled by default. When using the MTM-IO-
Serial in a linked system (communicating over the 1Mbit/s bus),
only a single set of pull-ups along the bus should be enabled in
order for the I2C bus to work properly (if more than one set is
enabled, the lines cannot be pulled low for communication).
Similarly, when using a single MTM device to communicate with
an external device over the I2C bus, either the internal pull-ups
can be enabled, or external hardware pull-ups added:

stem.i2c.setPullUp(bEnable)

RC Servo Entities

The MTM-IO-Serial board is equipped with 4 RC servo inputs
and 4 RC servo outputs. The RC Servo entity is an overload of
the Digital Entity and thus requires proper configuration before
this entity can be enabled.

Example: Enabling RC servo input mode for digital pin 0:

stem.digital[0].setConfiguration(digitalConfi

gurationRCServoInput)

With the RC servo entity, digital output pins generate pulsed
signal based on the RC Servo standard consisting of a period
lasting 20ms and high pulse time between 1-2ms. The high time
corresponds to a specific position determined by the specific
servo being used. RC servo inputs, measure this high time and
return the corresponding position for a servo.

Example: When operating as an RC servo input, enabling
functionality and reading position:

stem.RCServo[0].setEnable(bool)

stem.RCServo[0].getPosition(position)

Example: When operating as an RC servo output, enabling
functionality and setting position:

stem.RCServo[4].setEnable(bool)

stem.RCServo[4].setPosition(position)

Signal Entities

The MTM-IO-Serial board has 5 Signal Input and 4 Signal
outputs. The Signal entity allows you to generate square waves
by supplying a period and a time high value. The Signal inputs
can also be used as counters.

The Signal entity is an overload of the Digital entity and must
first be properly configured before it can be enabled. Using
Table 12: Digital IO , configure the correct digital pins as a Signal
input:

stem.digital[4].setConfiguration(digitalConfi

gurationSignalInput)

Now, configure period (t3 time) and the time high value (t2 time):

stem.signal[0].setT3Time(period)

stem.signal[0].setT2Time(timeHigh)

stem.signal[0].setEnable(enable)

Note: See the BrainStem Reference7 guide for timing diagram.

Signal and Digital Entities’ indices do not necessarily align.
Counting for the first Signal Entity starts at the first digital pin
that is equipped with a Signal overload (Digital 0 = Signal 0, see
Table 12: Digital IO).

 MTM-IO-Serial Datasheet

S62-MTM-IO-SERIAL

Revised 1.13 13 of 23 Revised September 2024

Rail Entities

Rails allow other devices and peripherals to consume power
from the MTM-IO-Serial module in a controlled fashion. Three
(3) different rails are available for use in a variety of application:
a single fixed 5.0V rail (RAIL0) and 2 adjustable voltage rails

(RAIL1, RAIL2). These rails are accessed through an array

of BrainStem rail class entities. The MTM-IO-Serial module

implements a subset of the BrainStem rail class for each of
these rails. The implemented rail entity options for each entity
index are summarized below.

Enabling Rails

All three rails can be switched on or off through using the API:

stem.rail[0].setEnable(state)

RAIL0 Operational Mode

RAIL0 can be configured to use two different regulation

stages: linear (LDO) or switch-mode power supply (SMPS):

stem.rail[0].setOperationalMode(mode)

stem.rail[0].getOperationalMode(mode)

The mode parameter is an integer that corresponds to the
following:

• 0 (railOperationalModeAuto) default

• 1 (railOperationalModeLinear)

• 2 (railOperationalModeSwitcher)

Auto configuration chooses the switch-mode power supply if an
input voltage greater than 7.25V is applied, and the linear
regulator otherwise. The API can be used to read the actual
operational state:

stem.rail[0].getOperationalState(state)

The value state is a 32-bit value. Bits 8-15 correspond to the
active hardware configuration:

• 0 (railOperationalStateLinear)

• 1 (railOperationalStateSwitcher)

Refer to aProtocoldefs.h in the BrainStem Reference

for more details7.

For applications such as RF system testing, one might want to
operate only in linear regulation mode to eliminate any potential
EMI sources. While operating in linear mode, one must be
aware of power dissipation through the linear regulation stage.
A higher input voltage will result in higher power dissipation.
When linear mode is desired and high current operation is
desired it is recommended to run the input voltage close to the
MTM-IO-Serial module’s minimum input voltage. Switch mode
power supply operation will allow a broader range of input
voltages while maintaining high current demand limits.

Figure 3 presents a simplified block diagram for the 5.0V
regulation paths.

Figure 3: Paths for 5.0V Regulation Stage

RAIL0 Temperature

The printed circuit board (PCB) temperature can be monitored
at the 5.0V rail (RAIL0) linear regulation stage. Reading this

value is possible through the API:

stem.rail[0].getTemperature(temperature)

Temperature monitoring is also used internally to prevent the
power regulation stage from overheating and self-preserving the
power stage. If an overtemperature condition occurs, then the
MTM-IO-Serial module will disable the linear regulator until safe
operating temperatures are reached.

RAIL1 and RAIL2 Voltage Setting

RAIL1 and RAIL2 always use linear regulators to generate

their adjustable voltages. They can be set or read using the API:

stem.rail[1].setVoltageSetpoint(microvolts)

stem.rail[1].getVoltageSetpoint(microvolts)

RAIL Protection

Each rail is current limited in hardware to 100mA and will
operate in constant-current mode upon reaching 100mA.
Extended operation in constant-current mode is discouraged
and may result in thermal shutdown of the rail.

Each rail is automatically disconnected when an overvoltage
condition is detected and automatically reconnected if the
overvoltage condition ceases. Overvoltage detection is
implemented in hardware and based on the rail’s voltage
setpoint.

UART Entities

UART entities provide a mechanism to enable and disable
UART data lines.

All the UARTs that are passed down from the MTM-IO-Serial
module can be turned on/off through software control. If a
voltage is applied that is higher than the current rail voltage

setpoint, each UART transmit line is current limited to 20mA
sinking. Therefore, only a small amount of current will flow into

 MTM-IO-Serial Datasheet

S62-MTM-IO-SERIAL

Revised 1.13 14 of 23 Revised September 2024

the device, preventing any damage to the MTM-IO-Serial
module’s hardware.

Each UART is paired with a specific voltage rail. UART0 and

UART1 use RAIL1’s voltage reference. UART2 and

UART3 use RAIL2’s voltage reference.

Figure 4: UART and Rail Voltage Pairings

When a UART is disabled by means of the command UART,

all exposed UART data lines will be discharged by being pulled

to Ground through a 10kΩ resistor.

USB Entities

The usb entity manages the software-controllable downstream

USB 2.0 channels of the MTM-IO-Serial (there are also two non-
software-controllable USB channels on the module, one through
the edge connector and the other through the onboard type-A
connector, which are always on), as well as the upstream USB
connection mode. All downstream USB ports are configured as
SDP (Standard Data Port).

USB Downstream

Each of the four software-controllable USB channels (ports 0-3)
can be individually manipulated using the usb entity. The API

individually controls port power, data, or both together:

stem.usb.setPowerEnable(port) (just VBUS)
stem.usb.setPowerDisable(port)

stem.usb.setDataEnable(port) (just D+/D-)
stem.usb.setDataDisable(port)

stem.usb.setPortEnable(port) (both)
stem.usb.setPortDisable(port)

The port parameter is an integer that correlates to the software-
controllable downstream channel (0-3).

USB Upstream

The MTM-IO-Serial has two (2) upstream USB connection
options: through the edge connector or via the mini-B connector
on the board itself. The upstream mode can be set or read using
the usb entity:

stem.usb.setUpstreamMode(mode)

stem.usb.getUpstreamMode(mode)

The mode parameter is an integer that correlates to the
following:

• 0 (edge connector)

• 1 (mini-B connector)

• 2 (auto configuration) default

Auto configuration chooses the upstream connection based on
the presence or absence of VBUS power at the mini-B
connector; if VBUS is present, the mini-B connector is used,
otherwise the edge connector is used. The actual upstream
connection in use can be read using the usb entity:

stem.usb.getUpstreamState(mode)

USB Hub Operational Mode

In addition to targeting individual downstream USB ports, a bit-
mapped hub state interface is also available. This interface
allows the reading or setting of all USB downstream ports in one
functional call:

stem.usb.getHubMode(state)

stem.usb.setHubMode(state)

The value state must be a 32-bit word, defined as the following:

Bit Hub Operational Mode Result Bitwise
Description

0 USB Channel 0 USB Hi Speed Data Enabled

1 USB Channel 0 USB VBUS Enabled

2 USB Channel 1 USB Hi Speed Data Enabled

3 USB Channel 1 USB VBUS Enabled

4 USB Channel 2 USB Hi Speed Data Enabled

5 USB Channel 2 USB VBUS Enabled

6 USB Channel 3 USB Hi Speed Data Enabled

7 USB Channel 3 USB VBUS Enabled

8:31 Reserved
Table 13: Hub Operational Mode Result Bitwise Description

USB Port State

Each downstream port reports information regarding its
operating state represented in bit-packed results from:

stem.usb.getPortState(channel,state)

 MTM-IO-Serial Datasheet

S62-MTM-IO-SERIAL

Revised 1.13 15 of 23 Revised September 2024

where channel can be [0-3], and the value status is 32-bit word,
defined as the following:

Bit Port State Result Bitwise Description

0 USB VBUS Enabled

1 USB2 Data Enabled

2:18 Reserved

19 USB Error Flag

20 USB2 Boost Enabled

21:31 Reserved
Table 14: Port State: Result Bitwise Description

USB Hub Error Status Mapping

 It is possible to retrieve current error states for all downstream
ports in a single 32-bit word. As only 4 downstream USB ports
are available, the bank parameter should be set to 0 for the
USBHub2x4.

stem.usb.getHubErrorStatus(bank=0,status)

Errors can be cleared on each individual channel (0, 1, 2 or 3)
by calling the following method:

stem.usb.clearPortErrorStatus(channel)

Details about the hub error status 32-bit word are as follows:

Bit Hub Error Status Result Bitwise Description

0 USB CH0 overcurrent limit exceeded4

1 USB CH0 VBUS back drive5

2 USB CH0 hub power system failure

3 USB CH0 VBUS discharge6

4:7 Reserved

8 USB CH1 overcurrent limit exceeded4

9 USB CH1 VBUS back drive5

10 USB CH1 hub power system failure

11 USB CH1 VBUS discharge6

12:15 Reserved

16 USB CH2 overcurrent limit exceeded4

17 USB CH2 VBUS back drive5

18 USB CH2 hub power system failure

19 USB CH2 VBUS discharge6

20:23 Reserved

24 USB CH3 overcurrent limit exceeded

25 USB CH3 VBUS back drive5

26 USB CH3 hub power system failure

27 USB CH3 VBUS discharge6

28:31 Reserved

4 Current limit value is defined by API settings section on USB
Downstream Channels.
5 VBUS exceeds 5.150V for longer than 5ms.

Table 15: Hub Error Status Result Bitwise Description

Reflex RTOS

Reflex is Acroname’s real-time operating system (RTOS)
language which runs in parallel to the module’s firmware. Reflex
allows users to build custom functionality directly into the device.
Reflex code can be created to run autonomously on the module
or a host can interact with it through BrainStem’s Timer, Pointer
App and other entities.

Timer Entities

The Timer entity provides simple scheduling for events in the
reflex system. The MTM-IO-Serial includes 9 timers per reflex.
Each timer represents a reflex definition to be executed upon
expiration of a running timer. Timers can be controlled from a
host, but the reflex code is executed on the device.

Example: Setting up and starting Timer 0 for single use:

stem.timer[0].setMode(timeModeSingle)

stem.timer[0].setExpiration(DELAY)

Reflex Definition: Timer 0 expiration callback:

reflex timer[0].expiration() { //Do Stuff }

Pointer Entities

Reflex and the Brainstem module share a piece of memory
called the scratchpad which can be accessed via the Pointer
Entity. The MTM-IO-Serial has 4 pointers per reflex which allow
access to the pad in a similar manner as a file pointer.

Example: Configure and access the scratchpad in static mode:

stem.pointer[0].setMode(pointerModeStatic)

stem.pointer[0].getByte(byte)

Reflex Pad: Single unsigned char definition:

pad[0:0] unsigned char byteValue

App Entities

Apps are reflex definitions that can be directly trigger by the host.
These definitions are also capable of passing a parameter into
or out of the app reflex definition. The MTM-IO-Serial is
equipped with 4 App Entities per reflex.

Example: Triggering App 0:

stem.app[0].execute(parameter)

Reflex Definition: App 0 callback:

6 VBUS discharge circuitry is activated. At the end of the 200ms
the hub will confirm that VBUS was discharged if the VBUS

voltage is not below 0.750V.

 MTM-IO-Serial Datasheet

S62-MTM-IO-SERIAL

Revised 1.13 16 of 23 Revised September 2024

reflex app[0](int appParam) { //Do Stuff }

MTM-IO-Serial Supported Entity Methods Summary

Detailed entity class descriptions can be found in the BrainStem Reference7. A summary of MTM-IO-Serial class options are shown
below. Note that when using Entity classes with a single index (i.e., 0), the index parameter can be dropped. For example:

stem.system[0].setLED(1) → stem.system.setLED(1)

Entity Class Entity Option Variable(s) Notes
digital[0-7] setConfiguration
 getConfiguration
 setState
 getState
rcservo[0-7] setEnable
 getEnable
 setPosition Index 4-7 only
 getPosition
 setReverse Index 4-7 only
 getReverse
i2c[0] write
 read
usb[0] setPortEnable
 setPortDisable
 setDataEnable
 setDataDisable
 setHiSpeedDataEnable
 setHiSpeedDataDisable
 setPowerEnable
 setPowerDisable
 getPortError
 clearPortErrorStatus
 getSystemTemperature In microcelsius
 setUpstreamMode
 getUpstreamMode
 getUpstreamState
 getDownstreamDataSpeed
 getHubMode
 setHubMode
 getPortState
UART[0-3] setEnable
 getEnable
rail[0] setEnable
 getEnable
 getTemperature In microcelsius
 setOperationalMode
 getOperationalMode
 getOperationalState
 getVoltage In microvolts
rail[1-2] setEnable
 getEnable

 MTM-IO-Serial Datasheet

S62-MTM-IO-SERIAL

Revised 1.13 17 of 23 Revised September 2024

Entity Class Entity Option Variable(s) Notes
 setVoltageSetpoint In microvolts
 getVoltageSetpoint In microvolts
 getVoltage In microvolts
signal[0-5] setEnable
 getEnable
 setInvert
 getInvert
 setT3Time
 getT3Time
 setT2Time
 getT2Time
store[0-2] getSlotState
 loadSlot
 unloadSlot
 slotEnable
 slotDisable
 slotCapacity
 slotSize
system[0] save
 reset
 setLED
 getLED
 setSleep
 setBootSlot
 getBootSlot
 getInputVoltage
 getVersion
 getModuleBaseAddress
 getModuleSoftwareOffset
 setModuleSoftwareOffset
 getModuleHardwareOffset
 setHBInterval
 getHBInterval
 getRouterAddressSetting
 getModule
 getSerialNumber
 setRouter
 getRouter
 getModel
 routeToMe
timer[0-7] getExpiration
 setExpiration
 getMode
 setMode
Pointer[0-3] getOffset
 setOffset
 getMode
 setMode
 getTransferStore

 MTM-IO-Serial Datasheet

S62-MTM-IO-SERIAL

Revised 1.13 18 of 23 Revised September 2024

Entity Class Entity Option Variable(s) Notes
 setTransferStore
 initiateTransferToStore
 initiateTransferFromStore
 getChar
 setChar
 getShort
 setShort
 getInt
 setInt
App[0-3] execute

Table 16: Supported MTM-IO-Serial BrainStem Entity API Methods7

7 See BrainStem software API reference at https://acroname.com/reference/ for further details about all BrainStem API methods
and information.

https://acroname.com/reference/

 MTM-IO-Serial Datasheet

S62-MTM-IO-SERIAL

Revised 1.13 19 of 23 Revised September 2024

LED Indicators

The MTM-IO-Serial board has a number of LED indicators to assist with MTM system development, debugging, and monitoring.
These LEDs are shown in the diagrams below.

Figure 5: MTM-IO-Serial LED Indicators

Figure 6: USB Status Indicators

 MTM-IO-Serial Datasheet

S62-MTM-IO-SERIAL

Revised 1.13 20 of 23 Revised September 2024

Edge Connector Interface

All MTM products are designed with an edge connector interface that requires a compatible board-edge connector on the carrier
PCB. Acroname recommends the through-hole PCI-Express (PCIe) Vertical Connector. The connectors can be combined with an
optional retention clip, as shown below. Representative part numbers are show in Table 17, and equivalent connectors are offered
from a multitude of vendors.

Manufacturer Manufacturer Part Number Description

Amphenol FCI
Samtec

10018784-10202TLF
PCIE-098-02-F-D-TH

PCI-Express 98-position vertical connector

Amphenol FCI 10042618-003LF PCI-Express Retention Clip (optional)
Table 17: PCI-Express Edge Connectors for MTM Products

Figure 7: PCIe Vertical Connector with optional Retention Clip

MTM Edge Connector Specifications Description

Contact Finish Gold

Card Thickness 0.0625” [1.59mm]

Number of Rows 2

Number of Positions Variable (see Table 17: PCI-Express Edge Connectors for MTM Products)

Pitch 0.039” (1.00mm)
Table 18: MTM Edge Connector Specifications

1.500
0.059

PCIe Connector

Retention Clip (optional)

 MTM-IO-Serial Datasheet

S62-MTM-IO-SERIAL

Revised 1.13 21 of 23 Revised September 2024

Mechanical

Dimensions are shown in inches [mm]. 3D CAD models are available through the MTM-IO-Serial product page’s Downloads
section. A 3D CAD viewer with many different CAD model formats available for download is available at https://a360.co/2Nc7y1B

Figure 8: MTM-IO-Serial Mechanical

124.99

1
2
.0

3

3
5

.9
7

3
7

.4
7

4
7

.9
8

10.01

11.2

1.91

38.18

3.76

12.7
47.24

2
.1

87
.9

2

1
2

.0
1

1.76

6.12
4.14

https://a360.co/2Nc7y1B

 MTM-IO-Serial Datasheet

S62-MTM-IO-SERIAL

Revised 1.13 22 of 23 Revised September 2024

Product Support

Questions about the product operation or specifications are welcome through Acroname’s contact portals. Software downloads,
reference API and application examples are available online at:

https://acroname.com/support

Direct communication and additional technical support are available at:

https://acroname.com/contact-us

2741 Mapleton Avenue

Boulder, CO, USA 80304-3837

720-564-0373 (phone)

https://acroname.com/support
https://acroname.com/contact-us

 MTM-IO-Serial Datasheet

S62-MTM-IO-SERIAL

Revised 1.13 23 of 23 Revised September 2024

Document Revision History

All major documentation changes will be marked with a dated revision code

Rev Date Engineer Description

1.0 July 2015 MJK Initial Revision

1.1 January 2016 JTD Updated to BrainStem 2.2 firmware

1.2 September 2016 RMN Formatting, Error checking, updates

1.3 October 2016 LCD Updated Overview, Features, Description sections, added DO jitter

1.4 December 2016 JG Clarified I2C pull-ups; update supported API calls

1.5 March 2017 JTD Updated block diagram, USB maximum ratings

1.6 May 2017 RMN Replaced references of MUX with UART.

1.7 April 2018 RMN Swapped hubState for portState

1.8 July 2020 ACRO Update formatting, fusion 360 model, entity updates, diagram updates

1.9 September 2020 TDH Rail API updates for Brainstem 2.8

1.10 January 2021 JLG Fix type in port state table title

1.11 February 2021 MJK Contact information for technical support

1.12 July 2022 JLG Add cmdSIGNAL specification

1.13 September 2024 TDH Correct typo in pinout table
Table 19: Document Revision History

	Overview
	Typical Application
	System Features
	Description
	IMPORTANT NOTE

	Absolute Maximum Ratings
	Handling Ratings
	Recommended Operating Ratings
	Block Diagram
	Typical Performance Characteristics
	Pinout Descriptions
	Pins Common to all MTM Modules
	Pins Specific to MTM-IO-Serial

	Module Hardware and Software Default Values
	Software Control

	Capabilities and Interfaces
	BrainStem Link and Module Networking

	Module Address Hardware Offset Configuration
	Upstream USB Connectivity Options

	System Entities
	Saving Entity Settings

	Store Entities
	Digital Entities
	I2C Entities
	RC Servo Entities
	Signal Entities
	Rail Entities
	Enabling Rails
	RAIL0 Operational Mode
	RAIL0 Temperature
	RAIL1 and RAIL2 Voltage Setting
	RAIL Protection

	UART Entities
	USB Entities
	USB Downstream
	USB Upstream
	USB Hub Operational Mode
	USB Port State
	USB Hub Error Status Mapping

	Reflex RTOS
	Timer Entities
	Pointer Entities
	App Entities
	MTM-IO-Serial Supported Entity Methods Summary
	LED Indicators
	Edge Connector Interface
	Mechanical
	Product Support
	Document Revision History

