
 MTM-USBStem Datasheet
S69-MTM-USBStem

Revision 1.6 1 of 1 Revised July 2020

Overview
The MTM-USBStem (S69-MTM-USBSTEM), as part of the
Acroname® MTM (Manufacturing Test Module) product series,
is a ruggedized general-purpose automation and IO module for
use in MTM-based test systems. The MTM-USBStem allows
MTM system designers a simple way to add digital and analog
IO to their designs.
Ideal for reliability and robustness in manufacturing or R&D
environments, the analog and digital outputs on the MTM-
USBStem are protected and against overvoltage, short-circuit
and overcurrent events. The low profile and small footprint of the
MTM-USBStem module makes it ideal for direct integration into
test fixtures, thereby eliminating the need for external
programmable IO cards or DMMs and their associated cabling.
Built using Acroname’s industry-proven and well-adopted
BrainStem® technology, resources on the MTM-USBStem are
controlled via Acroname's powerful and extensible BrainStem
technology and software APIs.

Typical Application
– Functional test-system instrumentation
– In-circuit testing
– Motion control in manufacturing applications
– General test and measurement

System Features
– 15 Digital GPIOs (overvoltage and current protected)
– 3 12-bit ADCs (overvoltage and current protected)
– 1 10-bit DAC (overvoltage and current protected)
– 1 real-time, user-configurable clock
– 1 user-dedicated I2C 400kHz bus
– 1 BrainStem I2C FM+ (1Mbit/s) bus

Description
As part of Acroname's MTM product series, the MTM- USBStem
is used to implement general purpose control and automation
functions in an MTM-based system. Details on the MTM
development platform architecture, BrainStem interface, and
APIs are at https://acroname.com/reference.
The MTM-USBStem implements an onboard BrainStem
controller running an RTOS (Real-Time Operating System),
which provides a host connection, independent operating
capability, the BrainStem interface and the MTM resources
identified in this datasheet (GPIO, analog IO, I2C, etc.). These
resources can be controlled from a host computer over USB or
in a network of MTM modules.
MTM-USBStem can be used to make measurements, control
signal-conditioning circuitry, or for automation control of
mechanical systems via servos or other electromechanical
systems. This versatile module is an ideal start and core part of
any functional test-system.

IMPORTANT NOTE
The MTM-USBStem utilizes a PCIe connector interface but is
for use strictly in MTM-based systems. It should never be
installed in a PCI slot of a host computer directly. Insertion into
a PC or non-MTM system could cause damage to the PC.

 MTM-USBStem Datasheet
S69-MTM-USBStem

Revision 1.6 2 of 1 Revised July 2020

Absolute Maximum Ratings
Stresses beyond those listed under ABSOLUTE MAXIMUM RATINGS can cause permanent damage to the device. These are
stress ratings only and functional operation of the device at these or any other conditions beyond those indicated under
RECOMMENDED OPERATING CONDITIONS is not implied. Exposure to absolute-maximum rated conditions for extended
periods affects device reliability and may permanently damage the device.

Voltage Rating Minimum Maximum Units
Input Voltage, Vsupply -13.2 13.2 V
I2C0 SDA, SCL -0.5 13.2 V
UART TX/RX -0.5 13.2 V
DIO 0-14 -0.5 13.2 V
Module Address 0-3 -0.5 13.2 V
Reset -0.5 13.2 V
USB D+, D- -0.5 5.5 V
USB Vbus -0.5 6.0 V
Analog 0-2 – input -0.5 13.2 V
Analog 3 – output -0.5 Vsupply V

Table 1: Absolute Maximum Ratings

The MTM system is designed to be used in a system where Vsupply is the highest voltage connected to all MTM modules. Each
module is designed to withstand Vsupply continuously connected to all IOs, excepting those specified above, including accidental
reverse polarity connection between Vsupply and ground (0V). As with all products, care should be taken to properly match interface
voltages and ensure a well-architected current-return path to ground. As with all devices utilizing USB interfaces, care should be
taken to avoid ground loops within the USB subsystem. When using the USB interface, ground must be at 0V potential to avoid
damaging connected host systems.

Handling Ratings
Parameter Conditions/Notes Minimum Typical Maximum Units
Storage Temperature, TSTG -10 - 85 °C
Relative Humidity Range Non-Condensing 5 - 95 %RH

Electrostatic Discharge, VESD

IEC 61000-4-2, level 4,
contact discharge to
edge connector interface

-8 - +8 kV

Table 2: Handling Ratings

Recommended Operating Ratings
Specifications are valid at 25°C unless otherwise noted. Intended for indoor use only.

Parameter Conditions/Notes Minimum Typical Maximum Units
Input Voltage, Vsupply 6.0 - 12.0 V
Voltage to any IO pin 0 - 3.3 V
Voltage to any I2C pin 0 - 3.3 V
Ambient Operating Temperature, TA Non-Condensing 0 25 70 °C
Relative Humidity Range Non-Condensing 5 - 95 %RH

Table 3: Recommended Operating Ratings

 MTM-USBStem Datasheet
S69-MTM-USBStem

Revision 1.6 3 of 1 Revised July 2020

Block Diagram

Figure 1: MTM-USBStem Block Diagram

BrainStem Module

Digital IODIO[14:0]

12-bit ADCA2D[2:0]

I2C0
I2C0 SDA

I2C1
I2C1 SDA

Linear
Regulator 6-12VDCBrainStem

USB Link
Connector

Physical Link
Data Lines

USB

I2C1 SCL

I2C0 SCL

A2D[3]

Module Addr
Offset

Module Address
Offset

Reset/
Bootstrap !Reset

USB D+
USB D-

Edge
connector

10-bit DAC

 MTM-USBStem Datasheet
S69-MTM-USBStem

Revision 1.6 4 of 1 Revised July 2020

Typical Performance Characteristics
Specifications are valid at 25°C unless otherwise noted. Indoor application use only. Sample rates are typically limited by the USB
throughput of the host operating system except where bulk capture is supported.

Parameter Conditions/Notes Minimum Typical Maximum Units
Base Current Consumption, Isupply Vsupply = 6V

Vsupply = 12V
-
-

82
83

-
-

mA

Reset Low Threshold - 1.2 - V
I2C SDA, SCL Pins 0.0 - 3.3 V
Digital Input Logic High, VIH 2.15 - - V
Digital Input Logic Low, VIL - - 1.1 V
Digital Input Leakage Current Mode set Input or High-Z - 110 - µA
Digital Input Resistance Mode set Input or High-Z - 4.25 4.45 MΩ
Digital Output Logic High, VOH - 3.3 - V
Digital Output Drive Current Output high; short to GND

Voutput = 0.9* VOH
-
-

20.0
3.15

30.0
-

mA

Digital Output Sink Current Output low; short to Vsupply - -20.0 -30.0 mA
Digital Output Short Duration Output high - Infinite - hours
Digital Output Overvoltage Duration Vsupply on pin - Infinite - hours
Digital Sample Rate1 via USB link, C++

Reflex
-
-

1000
8200

-
-

Hz

Analog Input Voltage 0 - 3.3 V
Analog Input Leakage Current - 110 - µA
Analog Voltage Reference Accuracy - 0.5 - %
Analog Input Resistance - 4.25 4.45 MΩ
Analog Input Sample Rate See Bulk Capture 7.0 - 184.6 kSps
Analog Output Sink Current - - -20.0 mA
Analog Output Source Current Set at max. output - - 19.0 mA
Analog Output Voltage 0.035 - 3.3 V

Table 4: Typical Performance Characteristics

1 Host dependent, test was done as a single instruction, subsequent instructions may affect performance.

0.0 1.0 2.0 3.0 4.0 5.0 6.0
0

1

10

20

Voltage (V)

Cu
rre

nt
 (m

A)

DIO Output Sink Current vs. Applied Voltage

DIO set to output low

0 1 10 20
0.0

1.0

2.0

3.0

4.0

Current (mA)

Vo
lta

ge
 (V

)

DIO Output High Voltage vs. Current Load

3.3V

 MTM-USBStem Datasheet
S69-MTM-USBStem

Revision 1.6 5 of 1 Revised July 2020

0.0 1.0 2.0 3.0 4.0 5.0
0

1

10

20

Voltage (V)

Cu
rre

nt
 (m

A)

Analog Output Sink Current vs. Applied Voltage

Analog Output set to Min.

0 1 10 30 50
0.0

1.0

2.0

3.0

4.0

Current (mA)

Vo
lta

ge
 (V

)

Analog Output (Max.) vs. Current Load

0.0

1.0

2.0

3.0
3.3

1 msec/division

Vo
lt

RC Servo Output

64
128
192

0.0

1.0

2.0

3.0
3.3

0.5 msec/division

Vo
lt

RC Servo Output

64
128
192

 MTM-USBStem Datasheet
S69-MTM-USBStem

Revision 1.6 6 of 1 Revised July 2020

Pinout Descriptions
WARNING: MTM modules use a PCIe connector interface that is common in most desktop computers; however, they are NOT
intended nor designed to work in these devices. Do NOT insert this product into any PCIe slot that wasn't specifically designed for
MTM modules, such as a host PC. Installing this module into a standard PCI slot will result in damage to the module and the PC.
The MTM edge connector pin assignments are shown in the following table. Please refer to Table 3: Recommended Operating
Ratings for appropriate signal levels.

Pins Common to all MTM Modules

Side A Edge Connector Side A Description Side B Edge Connector Side B Description
A1 GND B1 Input Voltage, Vsupply
A2 GND B2 Input Voltage, Vsupply
A3 GND B3 Input Voltage, Vsupply
A4 GND B4 Input Voltage, Vsupply
A5 Reset B5 Input Voltage, Vsupply
A6 GND B6 Reserved, Do Not Connect
A7 GND B7 Reserved, Do Not Connect
A8 I2C0 SCL B8 GND
A9 I2C0 SDA B9 GND
A10 GND B10 Reserved, Do Not Connect
A11 GND B11 Reserved, Do Not Connect
A12 Module Address Offset 0 B12 Module Address Offset 2
A13 Module Address Offset 1 B13 Module Address Offset 3

Table 5: Pins Common to all MTM Modules

Pins Specific to MTM-USBStem

Side A Edge Connector Side A Description Side B Edge Connector Side B Description
A14 Reserved, Do Not Connect B14 USB Upstream Data + (D+)
A15 Reserved, Do Not Connect B15 USB Upstream Data - (D-)
A16 Reserved, Do Not Connect B16 Reserved, Do Not Connect
A17 I2C1 SCL B17 Reserved, Do Not Connect
A18 I2C1 SDA B18 Digital IO 0
A19 Reserved, Do Not Connect B19 Digital IO 1
A20 Reserved, Do Not Connect B20 Digital IO 2

 MTM-USBStem Datasheet
S69-MTM-USBStem

Revision 1.6 7 of 1 Revised July 2020

Side A Edge Connector Side A Description Side B Edge Connector Side B Description
A21 Reserved, Do Not Connect B21 Digital IO 3
A22 Reserved, Do Not Connect B22 Digital IO 4
A23 Reserved, Do Not Connect B23 Digital IO 5
A24 Analog 0 B24 Digital IO 6
A25 Analog 1 B25 Digital IO 7
A26 Reserved, Do Not Connect B26 Digital IO 8
A27 Reserved, Do Not Connect B27 Digital IO 9
A28 Reserved, Do Not Connect B28 Digital IO 10
A29 Reserved, Do Not Connect B29 Digital IO 11
A30 Reserved, Do Not Connect B30 Digital IO 12
A31 Analog 2 B31 Digital IO 13
A32 Analog 3 B32 Digital IO 14

Table 6: Pins Specific to MTM-USBStem

 MTM-USBStem Datasheet
S69-MTM-USBStem

Revision 1.6 8 of 1 Revised July 2020

Module Hardware and Software Default Values
Software Control
The MTM-USBStem module firmware is built on Acroname’s BrainStem technology and utilizes a subset of BrainStem entity
implementations that are specific to the hardware’s capabilities. Table 7 details the BrainStem API entities and macros used to
interface with the MTM-USBStem module. For C and C++ developers, these macros are defined in aMTMUSBStem.h from the
BrainStem development package. For Python development, the module MTMUSBStem class defines the extent of each entity
array.
While Table 7 lists the BrainStem API entities available for this module, not all entity methods are supported by the MTM-USBStem.
For a complete list of supported entity methods, see Table 12. Note that available method options may vary by entity index, as well
as by entity, and calling an unsupported entity option will return an appropriate error (e.g.: aErrInvalidEntity,
aErrInvalidOption, aErrMode, or aErrUnimplemented) as defined in aError.h for C and C++ and the
Result class in Python.

All API example code snippets that follow are pseudocode loosely based on the C++ method calls - Python and Reflex are similar.
Please consult the BrainStem Reference for specific implementation details3.

Parameter Index Macro Name or Implemented Options Notes
Module Definitions:
 Module Base Address 4 aMTM_USBSTEM_MODULE_BASE_ADDRESS See aMTMUSBStem.h
Entity Class Definitions:
 digital Entity Quantity 15 aMTM_USBSTEM_NUM_DIG
 analog Entity Quantity 4 aMTM_USBSTEM_NUM_A2D
 i2c Entity Quantity 2 aMTM_USBSTEM_NUM_I2C
 clock Entity Quantity 1
 store Entity Quantity 3 aMTM_USBSTEM_NUM_STORES
 system Entity Quantity 1
 timer Entity Quantity 8 aMTM_USBSTEM_NUM_TIMERS
 app Entity Quantity 4 aMTM_USBSTEM_NUM_APPS
 pointer Entity Quantity 4 aMTM_USBSTEM_NUM_POINTERS
 servo Entity Quantity 8 aMTM_USBSTEM_NUM_SERVOS
 signal Entity Quantity 5 aMTM_USBSTEM_NUM_SIGNALS

Table 7: MTM-USBStem Hardware and Software Default Values2

2 Refer to aMTMUSBStem.h within the BrainStem Development Kit download for actual file.

 MTM-USBStem Datasheet
S69-MTM-USBStem

Revision 1.6 9 of 1 Revised July 2020

Capabilities and Interfaces
BrainStem Link and Module Networking
A BrainStem link can be established that will give the user
access to the resources available on the MTM-USBStem. The
module can then be controlled via a host running BrainStem
APIs or operated independently by running locally embedded,
user-defined programs based on Acroname’s BrainStem Reflex
language in the RTOS.
A BrainStem link to the MTM-USBStem can be established via
one of three (3) interfaces: the onboard USB connection, the
card-edge USB connection, or through another MTM module
using the BrainStem protocol (more on this interface below). For
the USB connection options, once the MTM-USBStem is
attached to a host machine, a user can connect to it via software
API:
stem.link.discoverAndConnect(linkType,

serialNumber, modelNumber)

The MTM-USBStem can also work within a network of other
Brainstem modules, such as in a test fixture, to give access to
the capabilities of all networked modules. On the MTM platform,
networked modules communicate using the Brainstem protocol,
which is transmitted over I2C. Each MTM-USBStem is uniquely
addressable via hardware or software to avoid communication
conflicts on the I2C bus. A software offset can be applied as
follows:
stem.system.setModuleSoftwareOffset(address)

Module Address Hardware Offset
Configuration
A hardware offset allows a user to modify the module’s address
on the BrainStem network. Using hardware offset pins is useful
when more than one of the same module type is installed on a
single BrainStem network. Applying a different hardware offset
to each module of the same type in one network allows for all
the modules to seamlessly and automatically configure the
network for inter-module communication. Further, modules can
be simply swapped in and out of the network without needing to
pre-configure a module’s address before being added to a
network. Finally, when a system has more than one of the same
module type in a network, the module address hardware offset
can be used to determine the module’s physical location and
thus its interconnection and intended function. For detailed
information on BrainStem networking see the BrainStem
Reference3.
Each hardware offset pin can be left floating or pulled to ground
with a 1kΩ resistor or smaller (pin may be directly shorted to
ground). Pin states are only read when the module boots, either
from a power cycle, hardware reset, or software reset. The
hardware offset pin states are treated as a bit state within a 4bit

number. This number is multiplied by 2 and added the to the
module’s base address. The hardware offset calculation is
detailed in the following table:

HW Offset Pin Address
Offset

Module
Base
Address

Final
Module
Address 3 2 1 0

NC NC NC NC 0 4 4
NC NC NC 1 2 4 6
NC NC 1 NC 4 4 8
NC 1 NC NC 8 4 12
1 NC NC NC 16 4 20
1 NC NC 1 (1+8) * 2 4 22

Table 8: Module Address Hardware Offset Examples

Upstream USB Connectivity Options
The MTM-USBStem supports upstream USB connections (to
communicate to a host PC) via the mini-B connector, or through
pins B14 and B15 of the PCIe edge connector. The module
defaults to using the edge connector and will switch to the mini-
B connector if 5V is present on Vbus at the mini-B connector.

System Entities
Every BrainStem module includes a single System Entity. The
System Entity allows access to configuration settings such as
the module address and router information, measurements such
as input voltage, control over the user LED, and many more.

Saving Entity Settings
Some entities can be configured and saved to non-volatile
memory. This allows a user to modify the MTM-USBStem's
startup and operational behavior away from the factory default
settings. Saving system settings creates a new default and often
requires a reboot of the MTM-USBStem for changes to take
effect; see Table 9: Entity Values Saved by system.save() for
relevant settings. Use the following command to save changes
to system settings before reboot:
stem.system.save()

Saved Configurations
Module Software Offset I2C Rate
Router Address Boot Slot
Heartbeat Rate

Table 9: Entity Values Saved by system.save()

Store Entities
Every BrainStem module includes several Store entities and
onboard memory slots to load Reflex files (for details on Reflex,
see BrainStem Reference3). One Reflex file can be stored per
slot. Store[0] refers to the internal flash memory, with 12
available slots, and store[1] refers to RAM, with 1 available slot.

 MTM-USBStem Datasheet
S69-MTM-USBStem

Revision 1.6 10 of 1 Revised July 2020

Digital Entities
The MTM-USBStem has fifteen (15) digital input/outputs (DIO)
controlled by the digital entity. Each DIO is controllable via
software and is independently current limited for both source
and sink currents.
All DIO are input and output capable:
stem.digital[0].setConfiguration(mode)
stem.digital[0].getConfiguration(mode)

The mode parameter is an integer that correlates to the
following:

Value Configuration
0 Input
1 Output
2 RC Servo Input
3 RC Servo Output
4 Hi Impedance (Hi-Z)
5 Input with Pull Down
6 Signal Output
7 Signal Input

Table 10: Digital IO Configuration Values
Example: If a digital pin is configured as an output, set the digital
logic level:
stem.digital[0].setState(level)

Example: If a digital pin is configured as an input, read the digital
logic level:
stem.digital[0].getState(level)

If a digital pin is configured in Hi-Z mode its internal circuitry has
been disconnected to create a high impedance. There are no
functions that can act on this configuration.
Configuring a digital pin as an RCServo input or output requires
use of the RCServo Entity. The RCServo input and output
modes are only available on a subset of the digital pins. Refer
to Table 11: Digital IO Pin Configurations for a complete list.
Note: Signal and RCServo entities are covered in a subsequent
section.

Pin Input Output Hi-Z RCServo Signal
DIO 0 Yes Yes Yes Input -
DIO 1 Yes Yes Yes Input -
DIO 2 Yes Yes Yes Input -
DIO 3 Yes Yes Yes Input -
DIO 4 Yes Yes Yes Output Input
DIO 5 Yes Yes Yes Output Input / Output
DIO 6 Yes Yes Yes Output Input / Output
DIO 7 Yes Yes Yes Output Input / Output
DIO 8 Yes Yes Yes - Input / Output
DIO 9 Yes Yes Yes - -
DIO 10 Yes Yes Yes - -
DIO 11 Yes Yes Yes - -
DIO 12 Yes Yes Yes - -
DIO 13 Yes Yes Yes - -
DIO 14 Yes Yes Yes - -

Table 11: Digital IO Pin Configurations

Analog Entities
The MTM-USBStem has three (3) analog inputs (ADC) and one
(1) analog output (DAC) all controlled by the analog entity. Each
analog is controllable via software and is independently current
limited for both source and sink currents.
The analog inputs are connected to a 12-bit ADC, and return a
value between 0 and 65535, corresponding to a range of 0-3.3V.
The analog inputs can be read back as voltages in microvolts or
ADC counts. The analog output is connected to a 10-bit DAC
and takes a set value between 0 and 65535, corresponding to a
range of 0-3.3V. The analog output may be set in microvolts or
DAC counts.
Example: For the analog output (analog[3]), set the DAC value
and voltage:
stem.analog[0].setValue(counts)
stem.analog[0].setVoltage(microVolts)

Example: For the analog inputs (analog[0-2]), read the ADC
value:
stem.analog[0].getValue(counts)
stem.analog[0].getVoltage(microVolts)

The MTM-USBStem’s ADC’s are also capable of being captured
in bulk based on a user defined sample rate. See Calculating
Bulk Capture Sample Rate for additional information on sample
rate settings. Configuring and triggering the bulk capture is
accomplished by setting the number of samples and the sample
rate, then triggering the capture.
To set the number of samples and the sample rate:
s.analog[0].setBulkCaptureNumberOfSamples(1)
s.analog[0].setBulkCaptureSampleRate(7000)

 MTM-USBStem Datasheet
S69-MTM-USBStem

Revision 1.6 11 of 1 Revised July 2020

where the sample rate is samples per second (Hz). The system
can capture any number of samples up the size of the
RAM_STORE slot 0 (8191). The capture is then triggered with:
stem.analog[0].initiateBulkCapture()

Results of the capture are stored in the RAM_STORE slot 0.
Results are always stored in ADC counts as two little-endian
byte pairs with the second byte the most significant. Computing
a sample value from the Store read out is:
sampleValue = array[i] + (array[i+1] << 8)

Additional information such as requesting capture status and
reading back the captured data can be found in the BrainStem
Reference3 and in the BrainStem SDK examples.

I2C Entities
The MTM-USBStem includes access to two separate I2C buses:
one operating at a set 1Mbit/s rate, and the other at 400kbits/s.
Note: The 1Mbit/s bus, while user-accessible, is also used for
BrainStem network communication so there may be other, non-
user-initiated traffic when other BrainStem modules are linked.
Example: Sending 2 bytes (0xABCD) through the I2C bus to a
device with address 0x42:
stem.i2c.write(0x42, 2, 0xABCD)

Example: Reading 2 bytes of data from a device with address
0x42:
stem.i2c.read(0x42, 2, buffer)

Where buffer would be a char array in C++.
The maximum data size for individual read and write operations
on an I2C bus through the BrainStem API is 20 bytes. Sending
more than 20 bytes of information must be done as an iterated
sequence.

Each I2C bus also includes 330W pull-up resistors on the SDA
and SCL lines, disabled by default. When using the MTM-DAQ-
2 in a linked system (communicating over the 1Mbit/s bus), only
a single set of pull-ups along the bus should be enabled in order
for the I2C bus to work properly (if more than one set is enabled,
the lines cannot be pulled low for communication). Similarly,
when using a single MTM device to communicate with an
external device over the I2C bus, either the internal pull-ups can
be enabled, or external hardware pull-ups added.
stem.i2c.setPullUp(bEnable)

RC Servo Entities
The MTM-USBStem board is equipped with 4 RC servo inputs
and 4 RC servo outputs. The RC Servo entity is an overload of
the Digital Entity and thus requires proper configuration before
this entity can be enabled.

Example: Enabling RC servo input mode for digital pin 0:
stem.digital[0].setConfiguration(digitalConfi

gurationRCServoInput)

Using the RC servo entity, digital output pins generate pulsed
signal based on the RC Servo standard consisting of a period
lasting 20ms and high pulse time between 1-2ms. The high time
corresponds to a specific position determined by the specific
servo being used. RC servo inputs measure this high time and
return the corresponding position for a servo.
Example: When operating as an RC servo input, enabling
functionality and reading position:
stem.RCServo[0].setEnable(bool)
stem.RCServo[0].getPosition(position)

Example: When operating as an RC servo output, enabling
functionality and setting position:
stem.RCServo[4].setEnable(bool)
stem.RCServo[4].setPosition(position)

Signal Entities
The MTM-USBStem board has 5 Signal input and 4 Signal
outputs. The Signal entity allows generation of square waves by
supplying a period and a time high value.
The Signal entity is an overload of the Digital entity and must
first be properly configured before it can be enabled. Using
Table 11: Digital IO Pin Configurations, configure the correct
digital pin as a Signal input:
stem.digital[4].setConfiguration(digitalConfi

gurationSignalInput)

Now, configure period (t3 time) and the time high value (t2 time):
stem.signal[0].setT3Time(period)
stem.signal[0].setT2Time(timeHigh)
stem.signal[0].setEnable(enable)

Note: See the BrainStem Reference3 guide for timing diagram.
Signal and Digital Entities’ indices do not align. Counting for the
first Signal Entity starts at the first digital pin that is equipped
with a Signal overload (Digital 4 = Signal 0, see Table 11: Digital
IO Pin Configurations).

Clock Entities
The MTM-USBStem includes a real-time, user-configurable
clock entity tracking a time object consisting of year, month, day-
of-the-month, hour, minute, and second.
Example: Setting values independently:
stem.clock.setYear(year)
stem.clock.setSecond(second)

Example: Reading values independently:
stem.clock.getYear(year)
stem.clock.getSecond(second)

 MTM-USBStem Datasheet
S69-MTM-USBStem

Revision 1.6 12 of 1 Revised July 2020

Reflex RTOS
Reflex is Acroname’s real-time operating system (RTOS)
language which runs in parallel to the module’s firmware. Reflex
allows users to build custom functionality directly into the device.
Reflex code can be created to run autonomously on the module
or a host can interact with it through BrainStem’s Timer, Pointer
App and other entities.

Timer Entities
The Timer entity provides simple scheduling for events in the
reflex system. The MTM-USBStem includes 8 timers per reflex.
Each timer represents a reflex definition to be executed upon
expiration of a running timer. Timers can be controlled from a
host, but the reflex code is executed on the device.
Example: Setting up and starting Timer 0 for single use:
stem.timer[0].setMode(timeModeSingle)
stem.timer[0].setExpiration(DELAY)

Reflex Definition: Timer 0 expiration callback:
reflex timer[0].expiration() { //Do Stuff }

Pointer Entities
Reflex and the Brainstem module share a piece of memory
called the scratchpad which can be accessed via the Pointer
Entity. The MTM-USBStem has 4 pointers per reflex which allow
access to the pad in a similar manner as a file pointer.
Example: Configure and access the scratchpad in static mode:
stem.pointer[0].setMode(pointerModeStatic)
stem.pointer[0].getByte(byte)

Reflex Pad: Single unsigned char definition:
pad[0:0] unsigned char byteValue

App Entities
Apps are reflex definitions that can be directly trigger by the host.
These definitions are also capable of passing a parameter into
or out of the app reflex definition. The MTM-USBStem is
equipped with 4 App Entities per reflex.
Example: Triggering App 0:
stem.app[0].execute(parameter)

Reflex Definition: App 0 callback:
reflex app[0](int appParam) { //Do Stuff }

 MTM-USBStem Datasheet
S69-MTM-USBStem

Revision 1.6 13 of 1 Revised July 2020

MTM-USBStem Supported Entity Methods Summary
Detailed entity class descriptions can be found in the BrainStem Reference3. A summary of MTM-USBStem class options are
shown below. Note that when using Entity classes with a single index (i.e., 0), the index parameter can be dropped. For example:
stem.system[0].setLED(1) à stem.system.setLED(1)

Entity Class Entity Option Variable(s) Notes
digital[0-14] setConfiguration
 getConfiguration
 setState
 getState
rcservo[0-7] setEnable
 getEnable
 setPosition Index 4-7 only
 getPosition
 setReverse Index 4-7 only
 getReverse
i2c[0-1] write
 read
analog[0-2] getValue
 getVoltage
 setBulkCaptureSampleRate
 getBulkCaptureSampleRate
 setBulkCaptureNumberOfSamples
 getBulkCaptureNumberOfSamples
 initiateBulkCapture
 getBulkCaptureState
analog[3] setValue
 setVoltage
clock[0] setYear
 getYear
 setMonth
 getMonth
 setDay
 getDay
 setHour
 getHour
 setMinute
 getMinute
 setSecond
 getSecond
signal[0-5] setEnable
 getEnable
 setInvert
 getInvert
 setT3Time
 getT3Time
 setT2Time
 getT2Time
store[0-2] getSlotState
 loadSlot

 MTM-USBStem Datasheet
S69-MTM-USBStem

Revision 1.6 14 of 1 Revised July 2020

Entity Class Entity Option Variable(s) Notes
 unloadSlot
 slotEnable
 slotDisable
 slotCapacity
 slotSize
system[0] save
 reset
 setLED
 getLED
 setBootSlot
 getBootSlot
 getInputVoltage
 getVersion
 getModuleBaseAddress
 getModuleSoftwareOffset
 setModuleSoftwareOffset
 getModuleHardwareOffset
 setHBInterval
 getHBInterval
 getRouterAddressSetting
 getModule
 getSerialNumber
 setRouter
 getRouter
 getModel
 routeToMe
timer[0-7] getExpiration
 setExpiration
 getMode
 setMode
Pointer[0-3] getOffset
 setOffset
 getMode
 setMode
 getTransferStore
 setTransferStore
 initiateTransferToStore
 initiateTransferFromStore
 getChar
 setChar
 getShort
 setShort
 getInt
 setInt
App[0-3] execute

Table 12: Supported MTM-USBStem BrainStem Entity API Methods3

3 See BrainStem software API reference at https://acroname.com/reference for further details about all BrainStem API methods
and information.

 MTM-USBStem Datasheet
S69-MTM-USBStem

Revision 1.6 15 of 1 Revised July 2020

LED Indicators
The MTM-USBStem board has nine LED indicators to assist with MTM system development, debugging, and monitoring. These
LEDs are shown in the diagrams below.

Figure 2: MTM-USBStem LED Indicators

 MTM-USBStem Datasheet
S69-MTM-USBStem

Revision 1.6 16 of 1 Revised July 2020

Edge Connector Interface
All MTM products are designed with an edge connector interface that requires a compatible board-edge connector on the carrier
PCB. Acroname recommends the through-hole PCI-Express (PCIe) Vertical Connector. The connectors can be combined with an
optional retention clip, as shown below. Representative part numbers are shown in Table 13, and equivalent connectors are offered
from a multitude of vendors.

Manufacturer Manufacturer Part Number Description
Amphenol FCI
Samtec

10018784-10201TLF
PCIE-064-02-F-D-TH

PCI-Express 64-position vertical connector

Amphenol FCI 10042618-003LF PCI-Express Retention Clip (optional)
Table 13: PCI-Express Edge Connectors for MTM Products

Figure 3: PCIe Vertical Connector with optional Retention Clip

Table 14: MTM Edge Connector Specifications

�
�����
����� �

3&,H�&RQQHFWRU

5HWHQWLRQ�&OLS��RSWLRQDO�

MTM Edge Connector Specifications Description
Contact Finish Gold
Card Thickness 0.0625” [1.59mm]
Number of Rows 2
Number of Positions 64
Pitch 0.039” (1.00mm)

 MTM-USBStem Datasheet
S69-MTM-USBStem

Revision 1.6 17 of 1 Revised July 2020

Mechanical
Dimensions are shown in mm. 3D CAD models are available through the MTM-USBStem product page’s Downloads section. A
3D CAD viewer with many different CAD model formats available for download is available at https://a360.co/3ddGee5.

Figure 4: MTM-USBStem Mechanical

7.
39

73

36
.0
4

1.49

48

3.75

12.7 4.
05

9.
76

21.18

1.9

11.2

10.02

40

.79

12.25

30
.7
4

 MTM-USBStem Datasheet
S69-MTM-USBStem

Revision 1.6 18 of 1 Revised July 2020

Calculating Bulk Capture Sample Rate
Step 1: Calculate Clock Divisor

Cd = Clock Divisor (This value must be rounded up to the nearest whole number
Cf = Clock Frequency = 96,000,000 Hz
n = Number of cycles required for Analog conversion = 65.
Rf = Requested Frequency in Hz
Cd = Cf / (n * Rf)

Step 2: Calculate Actual Bulk Capture Sample Rate
 Sr = Sample Rate

Cf = Clock Frequency = 96,000,000 Hz
n = Number of cycles required for Analog conversion = 65.
Cd = Clock Divisor (Calculated in Step 1)
Sr = Cf / (n * Cd)

Figure 5: Analog Bulk Capture Actual Sample Rate vs Requested Sample Rate

 MTM-USBStem Datasheet
S69-MTM-USBStem

Revision 1.6 19 of 1 Revised July 2020

Document Revision History
All major documentation changes will be marked with a dated revision code

Revision Date Engineer Description
1.0 October 2015 JTD Initial Revision
1.1 April 2016 JTD Corrected typographical errors
1.2 September 2016 RMN Formatting, Error checking, updates
1.3 October 2016 LCD Updated Overview, Features and Description sections
1.4 October 2016 RMN Added Bulk Capture information
1.5 December 2016 JG Clarified I2C pull-ups; update supported API calls
1.6 July 2020 ACRO Formatting, entity updates, diagram updates

Table 15: Document Revision History

