Date: 2022.04.21

Scanning Laser Range Finder UTM-30LX-EW Specification

CE		
Ro	Η	S

Symbol	Amendment Details			Amendment	Date	Amended by	Number
<u>∧</u> ×5	Error correction, Note added			2,3,5,6	3.11.2016	Yosimoto	RS-00696
<u>2</u> ×2	IP initialization switch deleted, RJ45 connector deleted		4,6	4.21.2022	F.Yamamoto	RS-01819	
				·	·		
Approved by	Checked by	Drawn by	Designed by	Title		UTM-30LX-EW	<u>/</u>
				Title		Specification	
Kamitani	Kamon	F.Yamamoto	Yosimoto	Drawing No.	C-4 2	2-4162	1/6

1. Introduction

Operation principles

The UTM-30LX-EW uses a laser source (λ =905nm) to scan a 270° semicircular field. It measures the distance for each angular step to objects in its range. The measurement data along with its angular step are transmitted via a communication channel. The laser safety is class 1.

2. Structure (Scanning image of laser beam)

• Before using the sensor, please read this specification thoroughly.

Drawing No

4. Specifications

Product Name	Scanning Laser Range Finder		
Model	UTM-30LX-EW		
Light Source	Laser Semiconductor $\lambda = 905$ nm Laser Class 1		
Supply Voltage	$DC 12V \pm 10\%$		
Supply Current	700mA or less (1A during start up)		
Detection Range	Guaranteed Range : 0.1 to 30m (White Kent Sheet) *2		
and	Maximum Range : 60m (Measurement limit)		
Detection Object	Minimum detectable width at 10m : 130mm (Vary with distance)		
Accuracy	0.1 to 10m : \pm 30mm, 10 to 30m : \pm 50mm (White Kent Sheet) *2		
	Under 30001x : White Kent Sheet: ± 30 mm ^{*1} (0.1m to 10m)		
	Under 100000lx : White Kent Sheet: ± 50 mm ^{*1} (0.1 m to 10 m)		
Measurement Resolution	1mm		
and	0.1 to 10m : σ<10mm, 10 to 30m : σ<30mm (White Kent Sheet) *2		
Repeated Accuracy	Under 3000lx : $\sigma < 10$ mm ^{*1} (White Kent Sheet up to 10m)		
	Under 1000001x : $\sigma < 30$ mm ^{*1} (White Kent Sheet up to 10m)		
Scan Angle	270°		
Angular Resolution	0.25° (360°/1440)		
Scan Speed	25ms *3		
Interface	Ethernet 100BASE-TX(Auto-negotiation)		
Output	Synchronous Output 1- Point (NPN open collector DC 30V, 30mA or less)		
LED Display	Green: Power supply.		
	Red: Normal Operation (Continuous), Malfunction (Blink)		
Ambient Condition	-10° C to $+50^{\circ}$ C		
(Temperature, Humidity)	Less than 85% RH (Without Dew, Frost)		
Storage Temperature	-25 °C to 75°C		
Environmental Effect	Measured distance will be shorter than the actual distance under the influence of rain, snow		
	and direct sunlight ⁵		
Vibration Resistance	10 Hz to 55Hz Double amplitude 1.5mm in each X, Y, Z axis for 2hrs.		
Import Posistance	55 Hz to 200 Hz 49m/s ² sweep of 2min in each X, Y, Z axis for 1nrs.		
Protective Structure	19000% In each X, Y, Z axis 10 times.		
	10NO DC 500V M		
Insulation Resistance	10MS2 DC 500V Megger		
	(EMI) ENG1226 1-2012		
	EN01520-1.2015		
	EN55011:2009 + A1:2010		
	(EMS)		
EMC Standard	EN01320-1:2013		
	ENG1000-4-2:2009		
	EN61000-4-3:2006 + A1:2008 + A2:2010		
	EN61000-4-4:2012		
	EN61000-4-6:2009		
	EN61000-4-8:2010		
Weight	300g (With cable)		
Case	Polycarbonate		
External Dimension	62mm×62mm×87.5mm		
(w×D×H)	WIC-40-5240		

*1 Under Standard Test Condition (Accuracy can not be guaranteed under direct sunlight.)

*2 Indoor environment with less than 1000Lx.

*³ In the case of using other command than MD, MS and ME. There is possibility of delay in response speed, due to surrounding environment.

*⁴ The protective structure of Ethernet connector is not IP67.

*⁵ Please perform necessary tests with the actual device in the working environment.

Use data filtering techniques to reduce the effect of water droplets when detecting objects under the rain.

Drawing No

5. Quality Reference Value

Vibration resistance during operation	10 to 150Hz 19.6m/s ² Sweep of 2min in each X,Y, Z axis for 30min
Impact resistance during operation	49m/s ² X, Y, Z axis 10times
Angular Speed	2π/s (1Hz)
Angular Acceleration	$\pi/2$ rad/ s ²
Life-span	5 Years (Varies with operating conditions)
Noise Level	Less than 25dB at 300mm
Certified	FDA approved (21 CFR part 1040.10 and 1040.11)

6. Interface

6.1 Robot Cable 4 Pin (2000mm)

Color	Function
Brown	+12 V
Blue	0 V
Green	Synchronous Output

6.2 Ethernet Cable 🖄 Cable length: 300mm

Wire color	Signal
White	TX+
Blue	TX-
Yellow	RX+
Orange	RX-

This sensor is compatible with SCIP2.2 communication protocol standard.

6.3 Output Circuit

7. Synchronous Output

Sensors outputs a pulsed signal with approximately 1ms width in every scan cycle. Output timing of this scan synchronized signal timing is shown below figure.

8. Malfunction Output:

1. Laser malfunction: When laser does not emit or exceeds safety class 1.

2. Motor malfunction: When motor fails to rotate at specified speed.

Sensor's outputs are switch to OFF state, laser is turned OFF and motor is stopped on malfunction detection. User sensor's communication channel for troubleshooting.

Error cause can be obtained from STAT line of the II command response of the SCIP communications protocol. Error details and troubleshooting measure and are shown in below table.

ID	Message	Details	Troubleshooting Measures
000	no error.	Normal	
050	internal chip access failed.	Processor unit fault	Sensor malfunction
100	Internal chip access failed.	Processor unit fault	that needs repairing.
150	internal chip access failed.	Processor unit fault	
151	internal chip initialize failed.	Processor unit initialization fault	
200	encoder error.	Encoder fault	
250	motor startup failed.	Motor fault	
251	motor rotation error.	Motor rotation unstable	Avoid excessive vibration and/or other mechanical noise to sensor.
300	laser too high.	Laser fault	Avoid strong
301	laser too low.	Laser fault	interference light and
302	laser no echo	Laser fault	/or other optical noise to sensor.
303	measurement error.	Measuring data processing fault	Avoid excessive vibration and/or other mechanical /optical noise to sensor

Title

5/6

🖽 Hokuyo Automatic Co.,LTD

Detail on measurement value

Below table shows the details of output value "x" for each measurement steps.

Range of output value	Details
x < 23	Measurement error. Distance could not be measured due to light interference and/or other optical/mechanical noise.
$23 \leq x < 60000$	Measured distance to object in that step.
60000 ≦ x	Detected object has very low reflectance or object is not detected in that step.

9. Multi echo Function

The sensor measures up to three echoes of reflection for each step (direction). Distance and intensity values of every echoes are obtained

Multiple echoes are produced by reflection on surface of transparent objects, reflection on object's boundary and reflection from small particles such as rain drops, mist, dusts and fog.

This sensor feature of getting distance and intensity values of multiple reflections at the same direction is called Multi echo Function.

- X Two closely positioned objects or low reflectance objects may not produce multiple echoes, so that they are not detectable as separate ones.
- % In the case when using this function, there is possibility of delay in response speed, due to surrounding environment. Λ

10. Ethernet Settings

 Initial value IP address: 192.168.0.10 Port number: 10940

(2) IP initialization \triangle

IP can be changed and initialized with the dedicated application (IP Discovery). Start IP Discovery from the range finder data confirmation tool (UrgBenri).

11. Cautions

The heat is generated as the internal circuit of the sensor runs at a very high speed. The generated heat is concentrated at the bottom of the sensor. Please mount a heat sink or any appropriate component to release the heat. An aluminum plate (200mm x 200mm x 2mm) is recommended as the heat sink. $\hat{\Lambda}$

Mutual Interference could occur when two or more identical sensors are mounted at the same detection plane. This is because the sensor could not identify the origin of the received laser pulses. It causes measurement error for one or two steps. Performing data filtering could overcome this problem.

Drawing No