.« ACRONAME

BrainStem Reference Manual
Release 2.11.1

Acroname, Inc.

Mar 05, 2025

Contents

1 Devices 1
1.1 USBHUD3D . . . o e e e e 2
111 Quick StartGuide e e 2

1.1.2 BasicExample e e e 3

1.1.3 Indicatorsand Connections e e 5

1.1.4 Programming Interface 6

1.1.5 USBHub3+ Module Entities e 7

1.2 USBHUD3C e e 23
1.21 Quick StartGuide e 23

1.22 BasicExample e 25

1.2.3 Indicatorsand Connections 26

1.24 Programming Interface 29

1.25 USBHub3c Module Entities e 34

1.2.6 USBHub3c Software Features e 55

1.3 USBHUD2xX4 e e e e 72
1.3.1 Quick Start Guide e e e 72

1.3.2 BasicExample e 73

1.3.3 Indicatorsand Connections e e 76

1.3.4 Programming Interface 77

1.3.5 USBHub2x4 Module Entities e 78

1.4 USB-C-Switch e e 93
141 Quick StartGuide e e e 93

1.42 BasicExample e 93

1.4.3 Indicatorsand Connections e 96

1.44 Programming Interface e 97

1.4.5 USB-C-Switch Module Entities 101

1.5 MTMProducts e e e e e e e 113
151 MTM-Relay. e e e e e e e e e 113

152 MTM-DAQ-2 e 125

1.5.3 MTM-PM-1 . . e e e e 139

1.5.4 MTM-Load-1 e e e e e 154

155 MTM-IO-Serial o o e 169

1.5.6 MTM-EtherStem e 191

1.5.7 MTM-USBStem e e e e 207

2 Software 223
2.1 HubTool e e 223

3

211 Whatcanitdo? e 224
2.1.2 Which Acroname devices work with HubTool? 224
2.1.3 Hostsystemrequirements e 224
214 Installation e e 225
215 Usage 225
2.1.6 Connecling deviCes o i i e e 226
2.1.7 Controldevicesonremotehosts 226
2.1.8 Updatingdevicefirmware e 227
2.1.9 Device-specificinterfaces L 228
22 BrainD e 279
221 nstallation e e 279
222 Quick StartGuide e 281
223 Usage e 283
224 SECUrty o o e e 285
225 Configuration e 286
226 Logging e e e 290
2.2.7 Platform Specific Considerations 290
2.2.8 Functionalityand Features e 292
2.29 Audio-Video Conferencing Solutions 292
2.2.10 Testand Measurement Applications. 292
2.3 ControlRoOOM e e 293
23.1 Installation e 293
232 UsSage i i e e e e 295
233 Advanced. e e e 305
2.3.4 Featuresand Functions 313
2.4 Q-SYS .. e 313
241 nstallation e e 314
242 Quick StartGuide e 314
243 FeaturesandFunctions e 315
25 DFUAutomator e e e e e 316
251 DFUAutomator Features e 316
API Reference 323
3.1 BrainStemEntities e e 324
3.1.1 AnalogEntity e 324
3.1.2 AppEntity . .. e e 325
3.1.3 Clock Entity e 326
3.1.4 Digital Entity e 329
3.1.5 Equalizer Entity o e 330
3.1.6 12CEntity e e 332
3.1.7 MuxEntity e 333
3.1.8 PointerEntity e 335
3.1.9 PortEntity e e 337
3.1.10 Power Delivery Entity 341
3111 RaillEntity e e 346
3.1.12 RCServoEntity 350
3.1.13 Relay Entity e 352
3.1.14 Signal Entity e e 353
3.1.15 StoreEntity e 355
3.1.16 SystemEntity e 358
3.1.17 Temperature Entity 363
3.1.18 TimerEntity e 363
3.1.19 UARTENtity o e 365
3.1.20 USBENtity e e 366

3.2

3.3

3.1.21 USBSystemEntity e 373
Python APl Reference e e e e 377
3.2.1 Getting (Quickly) Started e 377
3.2.2 Acroname Modules e e 380
3.23 Package Structure 399
324 Analog e 401
325 AP . e e 404
326 ClocK e e 405
3.2.7 Definitions e 407
3.28 Digital e e e 407
3.29 DISCOVEIY . . . o o e e e 409
3210 Entity e e 411
3.2.11 Equalizer e e 414
B.2.12 120 . . . e e 415
3218 LinK . . o e e e 416
3.2.14 Module e e 418
3215 MUX . . o o e e e 422
3.2.16 PDChannellogger o i i e e e e 424
3.217 Pointer e e e 426
3.218 Port . . . e 429
3.2.19 PowerDelivery o e 441
3.220 Rail e 449
3221 RCSErVO o e e 455
3.222 Relay e e 456
3223 ResuUlts e 457
3.224 Signal e e e 458
3.225 System e e 459
3226 SHOre . . . o e e 468
3.2.27 Temperature o o e e e 470
3.2.28 TIMEr e e e e 471
3.2.29 UART . . . e e 472
3.230 USB e e 473
3.231 USBSystem e 482
3.2.32 Version e 488
C++APIReference oo i e e e e 489
3.3.1 Acroname Modules e 489
332 AnalogClasso e e 523
333 AppClass e 526
3.34 Clock Class e e 527
3.35 Digital Class oo e e 529
33.6 EntityClass. e 531
3.3.7 EqualizerClass e 536
338 12CCIass o e 537
3.39 LinkClass e e 538
3.3.10 Module Class e e e 550
3311 MUXClasso e 554
3.3.12 PDChannellogger o o e e 556
3.3.183 PointerClass o e e 556
3.3.14 PortClass e e e 559
3.3.15 PowerDelivery Class e e 569
3.3.16 RailClass. i e e e 577
3.3.17 RCServo Class o i i i e e e e 582
3.3.18 Relay Class e 584
3.3.19 SignalClass o e 585

3.4

3.5

3.6

3.7

3.320 StoreClass e e e 586
3.321 System Class e e 588
3.3.22 Temperature Class e 596
3.323 TimerClass e e e e 597
3.324 UARTCIass v it e e e 598
3.325 USBClass i e e e 600
3.326 USBSystemClass e e 608
CAPIReference e e 613
341 aDefs.h e 613
3.42 aDiscovery.n 614
343 ErrorCodes e e e 617
344 aFileh. . .. e 620
345 alinkh .. e 623
3.4.6 aMutex.h e e 627
3.47 aPacket.h. e e 629
3.4.8 aProtocoldefs.h e 631
3.4.9 aStream.h e 658
3.410 aTime.h e 669
3411 aUELh . . . e 669
3.4.12 aVersion.h e e 671
3.4.13 PortMapping.h e 673
RESTful API Reference e e e 676
351 APIVersion vl e e e e e 676
NET APIReference e e e e 710
3.6.1 BrainStem2 CLITypes i e 710
3.6.2 AnalogClass e 712
3.6.3 AppClass e 715
3.64 ClockClass e 717
3.6.5 Digital Class 719
3.6.6 EqualizerClass e 721
3.6.7 12CClass e e 722
3.6.8 ModuleClass e e 723
3.6.9 MuxClass e e 729
3.6.10 Pointer Class e e e e 731
3.6.11 PortClass e 733
3.6.12 PortMapping o o o e e e e 744
3.6.13 PowerDelivery Class e e 746
3.6.14 RailClass. o e e 753
3.6.15 RCServo Class i e e e 759
3.6.16 Relay Class e 760
3.6.17 SignalClass e e 761
3.6.18 Store Class e e 763
3.6.19 System Class e 765
3.6.20 Temperature Class i i e e 771
3.6.21 TimerClass e 772
3.6.22 UART CIass e e e e e e e e e e 773
3.6.23 USBCIass e 774
3.6.24 USBSystemClass e 782
CCA APIReference e e e 788
3.71 Analog Entity e 788
3.72 AppEntity . .. 793
3.7.3 Clock Entity e e 794
3.74 Digital Entity e e 797
3.75 EqualizerEntity 799

376 I2CENHY . o o v oot e e 800

3.7.7 MuxEntity e 802
3.7.8 PointerEntity 804
3.79 PortEntity 808
3.7.10 PowerDelivery Entity e 827
3711 RaillEntity. e 840
3.7.12 RCServo Entity e e 848
3.713 RelayEntity e 850
3.7.14 Signal Entity e 851
3.715 Store Entity L e 854
3.7.16 SystemEntity 857
3.7.17 Temperature Entity e e 870
3.718 TimerEntity e 871
3.7.19 UARTENtity e e e e 872
3.720 USBENtity e e 874
3.7.21 USBSystemEntity e 889
3.7.22 Module Entity e 897
3.7.23 LinKEntity e 900
3.7.24 PDChannellogger o o e e 903
3.7.25 PortMapping e e 905
3.7.26 Version e e e e e 907
3.8 LabVIEW APIReference e e e 909
3.9 ReflexLanguage Reference e e e 910
3.9.1 Working with Reflexfiles 910
3.9.2 ABasic “HelloWorld” Example. 912
3.93 Blink MyLED Example 914
3.9.4 Builtinreflexorigins 917
3.95 Keywordsinthe ReflexLanguage 0. 919
3.9.6 OperatorsandPrecedence e 919
3.9.7 Types, ldentifiersand Numbers o 921
3.9.8 TheReflex Preprocessor e 923
3.9.9 Variable Declaration 923
3.9.10 Statements e 925
3.9.11 Reflexand Routine Definition 927
3.9.12 AppendiX e e e 928
3.10 Q-Sys APIReference o e e e e 937
3.10.1 ProductPlugins e e e 937
BrainStem 943
4.1 WhatisBrainStem e e e 943
411 Embedded WithReflex e e 943
412 Scalable e e 944
413 Usable e e 945
414 NextSteps oo 945
4.2 aBther . . . e 945
4271 OVEIVIEW . . ottt e e e e e e e e e e e e e e 945
422 CommunicationModels e 945
4.3 Getting Started e e 951
431 Dolneed Drivers? e e e e e e e 951
432 ConnectingtoaBrainStemDevice. e 952
4.3.3 LaunchHubTool e 953
434 Togglingthe LED e 953
4.4 Firmware Management e e e 953
4.41 Updating Firmware via HubTool 953

4.5

4.6

4.7

Index

442 Updating FirmwareviaCLl e 957
4.4.3 Updating Firmware without an Internet Connection 964
4.44 Updating a Brainstem Module via the Brainstem Network. 966
445 Recovering BrainStem FirmwareviaCLI 969
446 Recovering MTM Module FirmwareviaCLl 971
Terminology o o e e e e 974
451 BrainStem® Network 974
452 BrainStem®BUS e e 975
453 BRouting e e 975
454 Module 976
455 HOSt. . . . o e 976
456 Reflex 976
457 Entity ... 976
458 DisCOVEry e e e e 976
USB Drivers o o e e e 977
4.6.1 MacOS X . . . 977
4.6.2 LinuxUbuntu e e 977
4.6.3 Windows 7 USB Driverless Installation 977
AppendiX e e e e e e 978
4.7.1 Appendix |: BrainStem Universal Entity Interface (UEI) 979
4.7.2 Appendix ll: BrainStem Communication Protocol 987
4.7.3 Appendix lll: BrainStem Networking 989
474 Appendix IV: Updater File Structure o 996

999

vi

Here you can find sofware API documentation organized around specific Acroname devices. This documen-
tation also includes specific behaviors, features, and configuration values that are unique to each device.

BrainStem Reference Manual, Release 2.11.1

1.1 USBHub3p

The USBHub3+ gives engineers advanced flexibility and configurability over USB ports in testing and devel-
opment applications for both USB 3.0 and USB 2.0 devices. The USBHub3+ hub architecture consists of two
layers of internal hubs to achieve 8 fully controllable downstream ports.

To get up to speed with the USBHub3+ and quickly learn about its functionality follow the quick start guide.
Have a look at the basic example or dive into the capabilities of the USBHub3+ for a more in depth view.

1.1.1 Quick Start Guide

Power

» Using the provided universal power supply connect the barrel jack into the hub.
» Connect the other end into a 120/240V AC outlet.

2 Chapter 1. Devices

BrainStem Reference Manual, Release 2.11.1

Data

 With the provided USB 3.0 A-B cable connect the A side to your host computer and the B side to the
connection labeled “Up0”.

Download
+ Download the BrainStem Development Kit (BDK) for your particular operating system and architecture.
+ Download HubTool? for your particular operating system and architecture.

Play

* Open HubTool
» On the bottom right side of the application select the USBHub3p device.

Note: Linux users will need run the script labeled “udev.sh” located in the “BrainStem_linux_Driverless” folder
before they will be able communicate with a BrainStem device.

Congratulations! You are now ready to start exploring the capabilities of the USBHub3p. For more information
please take a look at our Getting Started Guide

1.1.2 Basic Example

C++

#include <iostream>
#include "BrainStem2/BrainStem—all.h"

static const uint8_t PORT = 5;
int main (int argc, const char * argv[]) {

//Create an instance of the USBHub3p
aUSBHub3p hub;

//Connect to USBHub3p

akErr err = hub.discoverAndConnect (USB) ;

if (err == aErrNone) {
printf ("Connected\r\n");

I3

else {
printf ("Unable to discover devicelr\n");
return 1;

}

//Disable PORT
hub.usb.setPortEnable (PORT) ;

(continues on next page)

1 https://acroname.com/ap
2 https://acroname.com/hubtool

1.1. USBHub3p 3

https://acroname.com/api
https://acroname.com/hubtool

BrainStem Reference Manual, Release 2.11.1

(continued from previous page)

SI77777777)
//Do Stuff
SIS0

//Enable PORT
hub.usb.setPortDisable (PORT) ;

//Disconnect
hub.disconnect () ;

return 0

}

L

Python

p
import brainstem

from brainstem.result import Result
import sys

PORT = 5

#Create an instance of the USBHub3p
hub = brainstem.stem.USBHub3p ()

#Connect to USBHub3p
result = hub.discoverAndConnect (brainstem.link.Spec.USB)

if result == Result.NO_ERROR:
print ("Connected\r\n") ;

else:
print ("Unable to discover devicel\r\n");
sys.exit (1)

hub.usb.setPortEnable (PORT)
#HAHAAAHAAS

#Do Stuff

#H#AAAAAAAH

hub.usb.setPortDisable (PORT)

#Close the connection
hub.disconnect ()
.

4 Chapter 1. Devices

BrainStem Reference Manual, Release 2.11.1

1.1.3 Indicators and Connections

Connections

CHO Port CH2Port CH4 Port CHé Port

CHI Portj \ CH3Portl CHSPort] CH7 Port

CHO Operational Speed
CHO Power

CHI Operational Speed
CH1 Power

USB Upstream
Operational

UsB 5.5mm OD,
Downstream A USB Upstream \ 2.5mm IN
\ CHO Active Power Input
USBHUb3+ USB N\ /
Link Status
Lﬁ
Heartbeat LED
/" /usB Upstream | / \ 3 Position
USBHUb3+ / / CHO \ \ Terminal Block
Soptrol - /- / UsBUpstream / /| \Bstm
Power/Waich / CHl | usBHUb3+
doglED usB Ups:vveam 1 ‘Egmreol Port
LEDs
LED Name Color Description
Link Status LED Yellow On once a host device has enumerated the BrainStem controller
User LED Blue Can be manipulated through any of the available APls
Heartbeat LED Green Indicates active BrainStem connection; pulses at a rate deter-
mined by the system heartbeat rate
Power/Watchdog Red and flashing Solid red indicates the system is powered. Flashing blue is in-
LED blue dication the internal watchdog is running and the USBHub3+
firmware is healthy
Upstream Op- Yellow or green Upstream enumeration speed to host: green for SuperSpeed;

erational Speed
LED

Upstream 0 LED
Upstream 1 LED
Control Port LED
Downstream Oper-
ational Speed LED

Downstream
Power LED

yellow for Hi-Speed or lower USB 2.0 speeds.

Green Indicates an active connection on upstream port

Green

Yellow

Yellow or green Downstream device enumeration speed: green for Super-

Speed; yellow for Hi-Speed or lower USB 2.0 speeds; off when
no device is enumerated
Red LED is on when downstream Vbus is enabled

1.1. USBHub3p

BrainStem Reference Manual, Release 2.11.1

1.1.4 Programming Interface

The USBHub3+ is capable of many features. These features are organized into groups called entities. Through
these entities we can access the vast features of the USBHub3+.

A complete list of all entities and functions can be found in the Module Module Entities page.

Software Control

Software control of the features of the USBHub3+ is done with the BrainStem API via a BrainStem link. Brain-
Stem links are done over USB and can be established via upstream port 0 (Up0), upstream port 1 (Up1), or
the Control Port. After one or more of these ports is connected to a host machine, a user can connect to it via
software API:

[stem.link.discoverAndConnect(USB)]

When multiple Acroname devices are connected to a host, connecting to a specific hub can be done by pro-
viding the hub serial number. Further, all connected devices can be found using

brainstem.discover.findAllModules (USB) (Python)
Acroname: :BrainStem: :Link: :sDiscover () (C++)

BrainStem Control Port

The USBHub3+ also has a dedicated control channel on the USB mini-B connector. This is a full-speed USB
2.0 connection for BrainStem interface only. No USB hub traffic can flow on this connection. When a cable
is connected to the mini-B connector, the BrainStem link can only be established through the Control Port,
independent of the selected upstream port. The USB 3.0 type-B connectors are then used only for USB hub
traffic to connect downstream USB devices. When the Control Port is not used, the BrainStem link will share
the active upstream USB connection. Using the Control Port provides the ability to completely disconnect both
USB upstream host connections while maintaining sofware control of the hub.

Using Multiple Hosts with USBHub3+

The two upstream-facing host ports can be connected to two different host computers. The control port can be
attached to no computer, one of the same computers attached to the upstream ports, or a third host computer.
Due to limitations of USB specification, only one host computer can access downstream USB ports at any
time. Through the BrainStem API, the upstream port used can be controlled, or the system can automatically
select the upstream port (see USB Hub Upstream Mode). When automatically selecting the upstream port, the
USBHub3+ will favor using UpO if it is connected.

6 Chapter 1. Devices

BrainStem Reference Manual, Release 2.11.1

Device Drivers
The USBHub3+ leverages operating system user space interfaces that do not require custom drivers for op-
eration on modern operating systems.

Some older operating systems may require the installation of a BrainStem USB driver to enable software con-
trol. Installation details on installing USB drivers can be found within the BrainStem Development Kit under
the “drivers” folder. For example, Windows 7 requires the supplied INF to communicate with BrainStem USB
devices.

1.1.5 USBHub3+ Module Entities
Temperature

API Documentation: [cpp] [python] [.NET] [LabVIEW]

Certain modules have a temperature measurement available. The temperature entity gives access to these
measurements. Check your module datasheet to see if your module has a temperature entity.

System Temperature

The temperature of the USBHub3+ can be measured with:

stem.temperature[0] .getTemperature (uC) [cpp] [python] [NET] [LabVIEW]

where temperature is in micro-degress Celcius.

System

API Documentation: [cpp] [python] [.NET] [LabVIEW]

Every BrainStem module includes a single system entity. The system entity allows the retrieval and manipula-
tion of configuration settings like the module address and input voltage, control over the user LED, as well as
other functionality.

1.1. USBHub3p 7

BrainStem Reference Manual, Release 2.11.1

Serial Number

Every USBHub3+ is assigned a unique serial number at the factory. This facilitates an arbitrary number of
USBHub3+ devices attached to a host computer. The following method call can retrieve the unique serial
number for each device.

stem.system.getSerialNumber (serialNumber) [cpp] [python] [NET] [LabVIEN]

Module Default Base Address

BrainStems are designed to be able to form a reactive, extensible network. All BrainStem modules come with
a default network base address for identification on the BrainStem network bus. The default module base
address for USBHub3+ is factory-set as 6, and can be accessed with.

stem.system.getModule (module) [cpp] [python] [NET] [LabVIEW]

Saved Settings

Some entities can be configured and saved to non-volatile memory. This allows a user to modify the startup
and operational behavior for the USBHub3+ away from the factory default settings. Saving system settings
preserves the settings as the new default. Most changes to system settings require a save and reboot before
taking effect. For example, upstream and downstream USB Boost settings will not take effect unless a system
save operation is completed, followed by a reset or power cycle. Use the following command to save changes
to system settings before reboot:

stem.system.save () [cpp] [python] [NET] [LabVIEW]

Pressing the reset button two times within 5 seconds will return all settings to factory defaults: all ports’ data
(HS and SS) and power enabled, CDP mode, enumeration delay of 0, 4095mA current limit.

Savable Items

Software Offset I12C Rate

Router Address Port Enumeration Delay
Boot Slot Downstream Boost

Port Mode (SDP, CDP) - each port Current Limit - per port
Upstream Boost Port state (data and power)

Upstream Port

8 Chapter 1. Devices

BrainStem Reference Manual, Release 2.11.1

usB

API Documentation: [cpp] [python] [[NET] [LabVIEW]

The USB Entity provides the software control interface for USB related features. This entity is supported by
BrainStem products which have programmatically controlled USB features.

USB Downstream Channel Control

Downstream USB channels can be manipulated through the usb entity command to enable and disable USB
data and Vbus lines, measure current, measure Vbus voltage, boost data line signals, and measure tempera-
ture.

Manipulating Hi-Speed data, SuperSpeed data, and Vbus lines simultaneously for a single port can be done
by calling the following methods with channel in [0-7] being the port index:

stem.usb.setPortEnable (channel) [cpp] [python] [NET] [LabVIEW]
stem.usb.setPortDisable (channel) [cpp] [python] [NET] [LabVIEW]

Manipulating Hi-Speed data and SuperSpeed data lines while not affecting the Vbus lines simultaneously for
a single port can be done by calling the following method with channel [0-7]:

stem.usb.setDatakEnable (channel) [cpp] [python] [NET] [LabVIEW]
stem.usb.setDataDisable (channel) [cpp] [python] [NET] [LabVIEW]

Manipulating just the USB 2.0 Hi-Speed data lines for a single port can be done by calling the following method
with channel [0-7]:

stem.usb.setHiSpeedDataEnable (channel [cpp] [python] [NET] [LabVIEW]
stem.usb.setHiSpeedDataDisable (channel) [cpp] [python] [NET] [LabVIEW]

Manipulating just the USB 3.1 SuperSpeed data lines for a single port can be done by calling the following
method with channel [0-7]:

stem.usb.setSuperSpeedDataEnable (channel) [cpp] [python] [NET] [LabVIEW]
stem.usb.setSuperSpeedDataDisable (channel) [cpp] [python] [NET] [LabVIEW]

Manipulating just the USB Vbus line for a single port can be done by calling the following method with channel
[0-7]:

stem.usb.setPowerkEnable (channel) [cpp] [python] [NET] [LabVIEW]
stem.usb.setPowerDisable (channel) [cpp] [python] [NET] [LabVIEW]

To affect multiple ports and lines simultaneously, see usb.setHubMode() later in this section.

1.1. USBHub3p 9

BrainStem Reference Manual, Release 2.11.1

USB Downstream Measurements

The USB Vbus voltage, as well as the current consumed on Vbus, can be read for each channel by calling the
following methods with channel [0-7], where the second variable passed into the method is the location for the
measurement result:

stem.usb.getPortVoltage (channel, nuV) [cpp] [python] [NET] [LabVIEW]

stem.usb.getPortCurrent (channel, pA) [cpp] [python] [NET] [LabVIEW]

USB Downstream Current Limiting

Current-limit trip point settings can be accessed for each port by calling the following methods with channel
[0-7], where the second variable passed into the method is either the set value or the write location of the
result:

stem.usb.getPortCurrentlLimit (channel, pA) [cpp] [python] [NET] [LabVIEN]
stem.usb.setPortCurrentlLimit (channel, pA) [cpp] [python] [NET] [LabVIEW]

The USBHub3+ current limit behavior follows the USB BC1.2 defined “trip off” behavior. When a downstream
device consumes more current than the set current limit, the Vbus voltage will immediately turn of and latch
off until the port is re- enabled. An overcurrent error flag is set in getPortState() bitfield. The voltage-current
behavior is detailed in Figure 6.

USB Downstream Enumeration Speed

The enumeration state and speed of each downstream port can be read with

stem.usb.getDownstreamDataSpeed [cpp] [python] [NET] [LabVIEW]

Value Hub Downstream Speed Descriptions

0 No device enumerated
1 Hi-Speed device enumerated
2 SuperSpeed device enumerated

USB Downstream Operational Mode

The USB port operational mode controls the behavior of each downstream port’s charging behavior. Each
port can be setup to support different modes in the USB Battery Charge Specification 1.2 (BC1.2). Standard
Downstream Port (SDP) mode will cause BC1.2 compliant or older USB devices to consume 500mA or less.
Configuring a port as a Charging Downstream Port (CDP) will cause the hub signal to downstream devices that
devices may consume up to 5A, the maximum allowed by BC1.2. If there is no upstream USB host connected
to the hub, downstream ports set to CDP will behave as Dedicated Charging Ports (DCP).

The actual current consumed by the device is controlled by the downstream device and not the USBHub3+.
Devices which are not compliant with BC1.2 or the previous USB power specifications may draw more current
than specified above.

The operational mode is set or read by calling the methods:

stem.usb.getPortMode (mode) [cpp] [python] [NET] [LabVIEW]

10 Chapter 1. Devices

BrainStem Reference Manual, Release 2.11.1

stem.usb.setPortMode (mode) [cpp] [python] [NET] [LabVIEW]

Value Hub Port Mode Descriptions

0 Standard downstream port (SDP)
1 Charging downstream port (CDP)

Note: A system.save() and system.reset() is required before the new setting will take affect.

USB Downstream Enumeration Delay

Once a USB device is detected by the USBHub3+ it is possible to delay its connection to an upstream host
computer and subsequent enumeration on the USB bus. The enumeration delay can mitigate or eliminate
host kernel instabilities by forcing devices to enumerate in slow succession, allowing a focus on validation of
drivers and software. The enumeration delay is configured in milliseconds, representing the time delay between
enabling each successive downstream port from 0 to 7. Enumeration delay is applied when the hub powers on
or when a new upstream connection is made.

stem.usb.setEnumerationDelay (delay) [cpp] [python] [NET] [LabVIEW]

stem.usb.getEnumberationDelay (delay) [cpp] [python] [NET] [LabVIEW]

USB Boost Mode

Boost mode increases the drive strength of the USB 2.0 Hi- Speed data signals (SuperSpeed data and power
signals are not changed). Boosting the data signal drive strength may help to overcome connectivity issues
when using long cables or connecting through relays, “pogo” pins or other adverse conditions. This setting is
applied after a system.save() call and reset or power cycle of the hub. The system setting is persistent until
changed or the hub is hard reset. After a hard reset, the default value of 0% boost is restored. A hard reset is
done by pressing the “Reset” button on the back of the hub while the hub is powered.

Boost mode can be applied to both the upstream and downstream USB ports with the follow methods:
stem.usb.getDownstreamBoostMode (setting) [cpp] [python] [NET] [LabVIEW]
stem.usb.setDownstreamBoostMode (setting) [cpp] [python] [NET] [LabVIEW]
stem.usb.getUpstreamBoostMode (setting) [cpp] [python] [NET] [LabVIEW]
stem.usb.setUpstreamBoostMode (setting) [cpp] [python] [NET] [LabVIEW]

The setting parameter is an integer that correlates to the following:

Value Hub Boost Mode Descriptions

0 Normal drive strength

1 4% increase in drive strength
2 8% increase in drive strength
3 12% increase in drive strength

1.1. USBHub3p 11

BrainStem Reference Manual, Release 2.11.1

USB Hub Upstream Channels

The USBHub3+ is perfect for environments where multiple devices need to be shared or switched between
two host computers using two host (upstream) connections via USB standard-B connectors. The upstream
connection can be automatically detected or specifically selected using the following methods:

stem.usb.getUpstreamMode (mode) [cpp] [python] [NET] [LabVIEW]
stem.usb.setUpstreamMode (mode) [cpp] [python] [NET] [LabVIEW]

The mode parameter can be defined as the following:

Value Definitions Hub Upstream Mode Descriptions
0 usbUpstreamModePort0 Force upstream port 0 to be selected
1 usbUpstreamModePort1 Force upstream port 1 to be selected
2 usbUpstreamModeAuto Automatically detect upstream port
255 usbUpstreamModeNone Disconnect both upstream ports

Predefined C++ macros for these can be found in aProtocoldef.h, and Python’s built-in help interface.

The default operational mode is to auto detect which upstream USB port is selected. Automatic detection uses
the presence of Vbus on the USB type-B upstream connector to determine presence of a host. If only one
upstream port is connected to a host, it will be used for upstream USB. If both upstream ports are connected,
the hub will use upstream port 0.

If the Hub Upstream Mode is set to disconnect both upstream ports (or the only active upstream port), the only
path available to establish a BrainStem link to the USBHub3+ will be via a host connected to the BrainStem
Control Port. See Figure 9 for more details.

USB Hub Upstream State

The USBHub3+ can provide status information on which upstream port is actively selected as data path to the
downstream ports:

stem.usb.getUpstreamState (mode) [cpp] [python] [NET] [LabVIEW]

This command returns a 32-bit value which indicates:

Value Definitions Hub Upstream Mode Descriptions
0 usbUpstreamModePort0 Force upstream port 0 to be selected
1 usbUpstreamModePort1 Force upstream port 1 to be selected
2 usbUpstreamModeAuto Automatically detect upstream port
255 usbUpstreamModeNone Disconnect both upstream ports

12 Chapter 1. Devices

BrainStem Reference Manual, Release 2.11.1

USB Hub Operational Mode

In addition to targeting individual downstream USB ports, a bit-mapped hub mode interface is also available.
This interface allows the reading or setting of all USB downstream ports in one functional call.

Auto VBus Toggle

By default the USBHub3+ will toggle its downstream ports anytime the host connection is lost, changed or dis-
connected. Disabling (setting the bit) will cause the hub to not cycle downstream power on upstream changes.
This behavior can be helpful for certain host controllers and devices. Enumeration delay will override this set-
ting.

stem.usb.getHubMode (mode) [cpp] [python] [NET] [LabVIEW]

stem.usb.setHubMode (mode) [cpp] [python] [NET] [LabVIEW]

Bit Hub Operational Mode Word Definition

USB Ch 0 USB Hi-Speed Data Enabled
USB Ch 0 USB Vbus Enabled

USB Ch 1 USB Hi-Speed Data Enabled
USB Ch 1 USB Vbus Enabled

USB Ch 2 USB Hi-Speed Data Enabled
USB Ch 2 USB Vbus Enabled

USB Ch 3 USB Hi-Speed Data Enabled
USB Ch 3 USB Vbus Enabled

USB Ch 4 USB Hi-Speed Data Enabled
USB Ch 4 USB Vbus Enabled

10 USB Ch 5 USB Hi-Speed Data Enabled

11 USB Ch 5 USB Vbus Enabled

12 USB Ch 6 USB Hi-Speed Data Enabled

13 USB Ch 6 USB Vbus Enabled

14 USB Ch 7 USB Hi-Speed Data Enabled

15 USB Ch 7 USB Vbus Enabled

16 USB Ch 0 USB SuperSpeed Data Enabled
17 Reserved

18 USB Ch 1 USB SuperSpeed Data Enabled
19 Reserved

20 USB Ch 2 USB SuperSpeed Data Enabled
21 Reserved

22 USB Ch 3 USB SuperSpeed Data Enabled
23 Reserved

24 USB Ch 4 USB SuperSpeed Data Enabled
25 Reserved

26 USB Ch 5 USB Super Speed Data Enabled
27 Reserved

28 USB Ch 6 USB SuperSpeed Data Enabled
29 Reserved

30 USB Ch 7 USB SuperSpeed Data Enabled
31 Auto VBus Toggle Disable

O©CoOoO~NOOOTPA~WN—=O

1.1. USBHub3p 13

BrainStem Reference Manual, Release 2.11.1

USB Port State

Each downstream port reports information regarding its operating state represented in bit-packed results from:
stem.usb.getPortState (state) [cpp] [python] [NET] [LabVIEW]

where channel can be [0-7], and the value status is 32-bit word, defined as the following:

Bit Port State: Result Bitwise Description
0 USB Vbus Enabled

1 USB2 Data Enabled

2 Reserved

3 USB3 Data Enabled
4:10 Reserved

11 USB2 Device Attached
12 USB3 Device Attached
13:18 Reserved

19 USB Error Flag

20 USB2 Boost Enabled
21:22 Reserved

23 Device Attached

24:31:00 Reserved

USB Port Error Status Mapping

Error states for all downstream ports are bit-packed in 32-bit words available from:
stem.usb.getPortError (channel) [cpp] [python] [NET] [LabVIEW]

where channel is [0-7].

Errors can be cleared on each individual channel by calling the following method:
stem.usb.clearPortErrorStatus (channel) [cpp] [python] [NET] [LabVIEW]

Calling this command clears the port-related error bit flags (see Table 7) in the port error state. Global bits for
hub errors cannot be cleared by this command.

Details about the port error status 32-bit word are as follows:

Port Error Status (channel) Result Bitwise Description

USB port current limit exceeded
USB port back-drive condition detected
Hub external power not present
Hub overtemperature condition
USB port short-circuit condition
:31 Reserved

A~ wWND-—=2O

14 Chapter 1. Devices

BrainStem Reference Manual, Release 2.11.1

Port

API Documentation: [cpp] [python] [[NET] [LabVIEW]

The Port Entity provides control over the most basic items related to a USB Port. This includes actions ranging
from a complete port enable and disable to the individual interface control. Voltage and current measurements
are also included for devices which support the Port Entity.

Port Control

The USBHub3p has a Port Entity for every port on the device; however, not all ports have the same capabilities.
These ports can be referenced by their instance (port[x]) index.

Port Label Index (port[x])

No ok~ WD —=O

Down-A
UpO0
Up1

0
1
2
3
4
5
6
7
8
9
1
Control 1

0
1

One of the most powerful features of the USBHub3p is its ability to turn ports on and off which is available on
Ports 0-7.

stem.hub.port [x].setEnabled () [cpp] [python] [NET] [LabVIEW]
stem.hub.port [x].getEnabled () [cpp] [python] [NET] [LabVIEW]

Manipulating just the USB Vbus line for a single port can be done by calling the following method on Ports 0-7.

stem.hub.port [x] .setPowerEnabled () [cpp] [python] [NET] [LabVIEW]
stem.hub.port [x] .getPowerEnabled () [cpp] [python] [NET] [LabVIEW]

Manipulating Hi-Speed data and SuperSpeed data lines while not affecting the Vbus lines simultaneously for
a single port can be done by calling the following method for Ports 0-7.

stem.hub.port [x].setDataEnabled () [cpp] [python] [NET] [LabVIEW]
stem.hub.port [x] .getDatakEnabled () [cpp] [python] [NET] [LabVIEW]

1.1. USBHub3p 15

BrainStem Reference Manual, Release 2.11.1

Manipulating just the USB 2.0 Hi-Speed data lines for a single port can be done by calling the following for
Ports 0-7.

stem.hub.port[x].setDataHSEnabled () [cpp] [python] [NET] [LabVIEW]
stem.hub.port [x] .getDataHSEnabled () [cpp] [python] [NET] [LabVIEW]

Manipulating just the USB 3.1 SuperSpeed data lines for a single port can be done by calling the following
method for Ports 0-7.

stem.hub.port [x].setDataSSEnabled () [cpp] [python] [NET] [LabVIEW]
stem.hub.port [x] .getDataSSEnabled () [cpp] [python] [NET] [LabVIEW]

Voltage and Current Measurements

The USBHub3p provides Voltage and Current measurements for Vbus. These values can be acquired for all
8 ports through the following APIs

stem.hub.port [x].getVbusVoltage () [cpp] [python] [NET] [LabVIEW]
stem.hub.port [x] .getVbusCurrent () [cpp] [python] [NET] [LabVIEW]

Power Modes

The ports of the USBHub3p are capable of providing power in multiple formats. The default is Charging Down-
stream Port (CDP), but that can be changed to things like: Standard Downstream Port (SDP), Charging Down-
stream Port (CDP) / Dedicated Charging Port (DCP). These modes can be set through:

stem.hub.port [x].setPowerMode () [cpp] [python] [NET] [LabVIEW]
stem.hub.port [x] .getPowerMode () [cpp] [python] [NET] [LabVIEW]

Power Mode Value Define

None 0 portPowerMode_none_Value
SDP 1 portPowerMode_sdp_Value
CDP/DCP 2 portPowerMode_cdp_dcp_Value

Note: The Power Modes can only be changed when the port power is disabled.

16 Chapter 1. Devices

BrainStem Reference Manual, Release 2.11.1

Port Mode

As outlined in the “Port Control” section the USBHub3p can individually manipulate almost every pin on the
connector; however, depending on your application that might require multiple function calls in order to config-
ure the port how you want it. Port Mode on the other hand is a one stop shop that allows you to pick and choose
which lines you want enabled or disabled through a single call. Additionally, it has a few other features tucked
away inside of it.

stem.hub.port [x].setMode () [cpp] [python] [NET] [LabVIEW]
stem.hub.port[x] .getMode () [cpp] [python] [NET] [LabVIEW]

Port Mode Item Bit Value Define
Power Enable 0 0/1 portPortMode_powerEnabled_Bit
HS 1 Enable 1 01 portPortMode_HS1Enabled_Bit
SS 1 Enable 3 0/1 portPortMode_SS1Enabled Bit
Power Mode: Offset 16 portPortMode_portPowerMode_Offset
Power Mode: Mask 0x7 portPortMode_portPowerMode_Mask
Power Mode: None 16-18 0 portPortMode_portPowerMode_none_Value
Power Mode: SDP 16-18 1 portPortMode_portPowerMode_sdp_Value
Power Mode: CDP/DCP 16-18 2 portPortMode_cdp_dcp_Value

Data Role

The data role describes the current configuration of the port in regards to its data direction. In most cases this
evaluates to an Upstream Facing Port (UFP) or a Downstream Facing Port (DFP). Upstream in this case means
the host side of the port and Downstream refers to the device side. The Data Role can be aquired through:

stem.hub.port [x] .getDataRole () [cpp] [python] [NET] [LabVIEW]

Data Role Value Define

Disabled 0 portDataRole_Disabled Value
Upstream 1 portDataRole_Upstream_Value
Downstream 2 portDataRole_Downstream_Value
Control 3 portDataRole_Control_Value

1.1. USBHub3p 17

BrainStem Reference Manual, Release 2.11.1

Port Limits and Modes

At the Port level the user has the ability to define current limit.

stem.hub.port [x].setCurrentLimit () [cpp] [python] [NET] [LabVIEW]
stem.hub.port [x] .getCurrentLimit () [cpp] [python] [NET] [LabVIEW]

Downstream Data Speed

The USBHub3p can detect if a device has been enumerated. Additionally, it can detect at what speed a device
has enumerated at.

stem.hub.port [x] .getDataSpeed () [cpp] [python] [NET] [LabVIEW]

Data Speed Bit Value Define

1.5 Mbit/s 0 0/1 portDataSpeed_Is_1p5M_Bit

12 Mbit/s 1 0/1 portDataSpeed_fs_12M_Bit

480 Mbit/s 2 0/1 portDataSpeed_hs_480M_Bit

5 Gbit/s 3 0/1 portDataSpeed_ss_5G_Bit

10 Gbit/s 4 0/1 portDataSpeed_ss_10G_Bit

USB 2.0 6 0/1 portDataSpeed_Connected 2p0_Bit
USB 3.0 7 0/1 portDataSpeed_Connected 3p0_Bit

USB System

API Documentation: [cpp] [python] [.NET] [LabVIEW]

The USBSystem class provides high level control of the lower level Port Entity

Upstream Control

The USBHub3p has the ability to designate one of the upstream ports (9-10) as the upstream connection. This
is very useful for moving devices between hosts.

stem.hub.setUpstream() [cpp] [python] [NET] [LabVIEW]
stem.hub.getUpstream() [cpp] [python] [NET] [LabVIEW]

18 Chapter 1. Devices

BrainStem Reference Manual, Release 2.11.1

Enumeration Delay

Once a USB device is detected by the USBHub3p it is possible to delay its connection to an upstream host
computer and subsequent enumeration on the USB bus. The enumeration delay can mitigate or eliminate
host kernel instabilities by forcing devices to enumerate in slow succession, allowing a focus on validation of
drivers and software. The enumeration delay is configured in milliseconds, representing the time delay between
enabling each successive port. Enumeration delay is applied when the hub powers on or when a new upstream
connection is made.

stem.hub.setEnumerationDelay () [cpp] [python] [NET] [LabVIENW]
stem.hub.getEnumerationDelay () [cpp] [python] [NET] [LabVIEW]

Data Behavior

The USBHub3p is capable of a few different behaviors for how it switches upstream port connections. It can
auto switch based on port priority or have a fixed upstream port. The method in which these events are handled
is referred to as data behavior.

List of Available Data Behaviors for USBHub3p

Behavior Value Define

Hard Coded 0 usbsystemDataBehavior HardCoded
Reserved 1 usbsystemDataBehavior_Reserved
Port Priority 2 usbsystemDataBehavior_PortPriority

Hard Coded (Default Configuration)

The Hard Coded data behavior is used to fix the Upstream port to a single port and not allow it to move except
for a command through the Set Upstream API.

Port Priority

The Port Priority data behavior prioritizes making the Upstream port the lowest numbered port on the USB-
Hub3p that is capable of being an Upstream port.

Relevant API's

stem.hub.setDataRoleBehavior () [cpp] [python] [NET] [LabVIEW]
stem.hub.getDataRoleBehavior () [cpp] [python] [NET] [LabVIEW]

1.1. USBHub3p 19

BrainStem Reference Manual, Release 2.11.1

Complete list of Supported Entities and Functions

Entity Class Entity Option Variable(s) Notes

App[0-3] execute
return
system[0] getModel
getHardwareVersion
getModule
getRouter
setHBInterval
getHBInterval
setLED
getLED
setBootSlot
getBootSlot
getVersion
getSerialNumber
save
reset
getlnputVoltage
getinputCurrent
getModuleBaseAddress
getModuleSoftwareOffset
getRouterAddressSetting
getUptime
getMaximumTemperature
getName
setName
resetDeviceToFactoryDefaults
timer[0-8] getExpiration
setExpiration
store[0-1] getSlotState
loadSlot
unloadSlot
slotEnable
slotDisable
slotCapacity
slotSize
Pointer[0-3] getOffset
setOffset
getMode
setMode
getTransferStore
setTransferStore
initiate TransferToStore
initiate TransferFromStore
getChar
setChar
getShort
setShort
getint

continues on next page

20 Chapter 1. Devices

BrainStem Reference Manual, Release 2.11.1

Table 2 - continued from previous page

Entity Class

Entity Option

Variable(s) Notes

temperature[0]

usb[0]

port[0-7]

setint

getTemperature
setPortEnable
setPortDisable
setDataEnable
setDataDisable
setHiSpeedDataEnable
setHiSpeedDataDisable
setSuperSpeedDataEnable
setSuperSpeedDataDisable
setPowerEnable
setPowerDisable
getPortVoltage
getPortCurrent
getPortCurrentLimit
setPortCurrentLimit
setPortMode

getPortMode
getDownstreamDataSpeed
getHubMode

setHubMode

getPortState

getPortError
getEnumerationDelay
setEnumerationDelay
clearPortErrorStatus
getUpstreamMode
setUpstreamMode
getUpstreamState
getUpstreamBoostMode
setUpstreamBoostMode
getDownstreamBoostMode
setDownstreamBoostMode
getEnabled

setEnabled
getDataEnabled
setDataEnabled
getDataHSEnabled
setDataHSEnabled
getDataSSEnabled
setDataSSEnabled
getPowerEnabled
setPowerEnabled
getHSBoost

setHSBoost

getMode

setMode

getCurrentLimit
setCurrentLimit
getVbusVoltage

Channels 0-7
Channels0-7
Channels 0-7
Channels 0-7
Channels 0-7
Channels 0-7
Channels 0-7
Channels 0-7
Channels 0-7
Channels 0-7
Channels 0-7
Channels 0-7
Channels 0-7
Channels 0-7
Channels 0-7
Channels 0-7
Channels 0-7

Channels 0-7

continues on next page

1.1. USBHub3p

21

BrainStem Reference Manual, Release 2.11.1

Table 2 - continued from previous page

Entity Class

Entity Option

Variable(s) Notes

port[8]

port[9-10]

port[11]

USBSystem [0]

getVbusCurrent
getState

getName

setName
getPowerMode
setPowerMode
getDataRole
getDataSpeed
getErrors
getHSBoost
setHSBoost
getName

setName
getPowerMode
setPowerMode
getDataRole
getHSBoost
setHSBoost
getName

setName
getDataRole
getName

setName
getDataRole
getUpstream
setUpstream
setDataRoleBehavior
getDataRoleBehavior
getEnumerationDelay
setEnumerationDelay

22

Chapter 1. Devices

BrainStem Reference Manual, Release 2.11.1

1.2 USBHub3c

The USBHub3c gives engineers advanced flexibility and configurability over USB ports in testing and develop-
ment applications to validate, control, and test the limits of devices built on the Power Delivery (USB-PD) and
USB specification.

To get up to speed with the USBHub3c and quickly learn about its functionality follow the quick start guide.
Have a look at the basic example or dive into the functionality of the USBHub3c for a more in depth view.

1.2.1 Quick Start Guide
1. Download The Development Kit & HubTool

+ Download the BrainStem Development Kit (BDK)? for your particular operating system and architecture.

+ Download HubTool* for your particular operating system and architecture.

8 https:/acroname.com/api
4 https://acroname.com/hubtool

1.2. USBHub3c 23

https://acroname.com/api
https://acroname.com/hubtool

BrainStem Reference Manual, Release 2.11.1

2. Connect Power

« Using the provided Power Delivery (PD) brick/wallwort and the USBU 3.0 C-C cable make a connection
between it and the Power-C port located on the back of the USBHub3c.

* Plug the PD Brick into a 120/240V AC outlet.

Power Adapter

E 599-USBHUB-3C
E U lated | PowerC
L § Select nreguialed ‘nput o External Interface
< © CEEE] =

3. Connect Data

» With a second USB 3.0 Type-C cable make a connection between Port “0” and the your host computer.

Hest PC
598-USBHUB-3C N
@ coo H o H + H 2 H 3 H a H 5H§
o) o) o) o) o) o O g
i — : — H — H — : — : — : — : q
4. Play

* Open HubTool
» On the bottom right side of the application select the USBHub3c device.

Note: Linux users will need run the script labeled “udev.sh” located in the “BrainStem_linux_Driverless” folder
before they will be able communicate with a BrainStem device.

Congratulations! You are now ready to start exploring the capabilities of the USBHub3c. For more information
please take a look at our Getting Started Guide

24 Chapter 1. Devices

BrainStem Reference Manual, Release 2.11.1

1.2.2 Basic Example

This simple example shows briefly how instantiate, connect to, disable and re-enable a port on the USBHub3c.
There are multiple examples shipped with the BrainStem Development Kit (BDK)> download.

C++

#include <iostream>
#include "BrainStem2/BrainStem—all.h"

static const uint8_t PORT = 5;
int main (int argc, const char * argv[]) {

//Create an instance of the USBHub3c
aUSBHub3c device;

//Connect to USBHub3c
akErr err = device.discoverAndConnect (USB) ;
if (err == aErrNone) {
printf ("Connected\r\n") ;
I3
else {
printf ("Unable to discover device\r\n");
return 1;

//Disable PORT
device.hub.port [PORT] .setEnabled(0) ;
0SS

//Do Stuff

Iy da

//Enable PORT
device.hub.port [PORT] .setEnabled (1) ;

//Disconnect
device.disconnect () ;

return 0

Python

g
import brainstem

from brainstem.result import Result
import sys

PORT = 5

#Create an instance of the USBHub3c
device = brainstem.stem.USBHub3c ()

#Connect to USBHub3c
result = device.discoverAndConnect (brainstem.link.Spec.USB)

(continues on next page)

5 https:/acroname.com/api

1.2. USBHub3c 25

https://acroname.com/api

BrainStem Reference Manual, Release 2.11.1

(continued from previous page)

if result == Result.NO_ERROR:
print ("Connected\r\n") ;

else:
print ("Unable to discover devicelr\n");
sys.exit (1)

Disable Port
device.hub.port [PORT] .setEnabled (0)

#HAAFAAFAFA
Do Stuff
#HAEFFAAFAAS

Enable Port
device.hub.port [PORT] .setEnabled (1)

#Close the connection
device.disconnect ()
=

1.2.3 Indicators and Connections

LEDs

P
L
]

Link H:—;— Data Mode
Lser ; Data Rate

@ '
[R
[
L]
r

Heartbeat Fower Delivery Raole
Power [Watchdog C%j I: +—Wbus Mode v

[
Control f CHO-6

26 Chapter 1. Devices

BrainStem Reference Manual, Release 2.11.1

LED Name Color Description

Link Status LED Yellow On once a host device has enumerated the BrainStem controller
User LED Blue Can be manipulated through any of the available APls
Heartbeat LED Green Indicates active BrainStem connection; pulses at a rate deter-

mined by the system heartbeat rate
Power/Watchdog Red and flashing Solid red indicates the system is powered. Flashing blue is in-

LED blue dication the internal watchdog is running and the USBHub3c
firmware is healthy
Data Mode Green Upstream Port
Red Dowstream Port
White Control Port
Data Rate Yellow Downstream enumeration of USB 2.0 speeds.
Green Downstream enumeration of SuperSpeed (5Gbps)
Blue Downstream enumeration of SuperSpeed+ (10Gbps)
Power Role Red Connected: Port is Sourcing Power; Not Connected: Source
Only
Green Connected: Port is Sinking Power; Not Connected: Sink Only
Blue Connected: N/A; Not Connected: Port is Dual Role Power Ca-
pable
Mode Mode Red SDP, CDP or DCP modes
Blue Power Delivery Mode
Green Quick Charge™ Mode
White Programable Power Supply Mode

1.2. USBHub3c 27

BrainStem Reference Manual, Release 2.11.1

Connections

Power Adapter
S99-USBHUB-3C
E PD § Select Unregulated Input PowerG External Interface
@]
= © CEEM =
Host PC
599-USBHUB-3C N
g cwH o H + H 2 s H « H s HE
o) 0 5
I El El(_}H @H @H @H @H-‘E
Separate Control Computer
Host PC
599-USBHUB-3C "
geowH o H + H 2 H s H « H s HE§
o g
G @EI :)E' (—.rH (—.rEl ﬁEI cﬁEI ﬁa"
Control PC

28 Chapter 1. Devices

BrainStem Reference Manual, Release 2.11.1

External Connector

n = Mmoo = O w0
. = = = = = = o= = on
! fEidcaoc QO —SHELD
[[Y ¥ ¥ I\r 1r| ¥ Y ¥
© lllllll‘l‘ll
------ ; —
olcgedlo CELLIL LY,
L 3 L ry L.
| o] =+
GND Vs Power-C GND 8 3 %

1.2.4 Programming Interface
Overview

The USBHub3c consists of 6 USB Type-C ports connected to a USB 3.2 Gen 2x1 Hub, USB Power Delivery,
and Qualcom QuickCharge hardware. The software control of this device manipulates various capabilities of
each of these ports. The USBHub3c is one of a family of Acroname devices, and shares some of its feature
set and interface with other Acroname devices.

Acroname provides software APIs for working with the USBHub3c in a number of different languages. We strive
to keep much of the syntax and structure of the API similar across these languages. The core of this common
protocol, API software structure, and nomenclature we call BrainStem (for more information see BrainStem).

Whether C++ or Python or another language interface is the target, all of our APIs start with the concept of a
connection to the USBHub3c device. This is usually represented by a class, an instance of which represents
a connection to a specific USBHub3c. We call these classes “Modules” or “Module classes.” Each class then
contains a set of subclass instances which represent interface functionality for a specific piece of hardware
functionality. We call these sub objects “Entities.” The following code block represents the “Module” class
definition for the USBHub3c.

Module class

C++

class aUSBHub3c : public Acroname::BrainStem: :Module

{
public:

aUSBHub3c (const uint8_t module = aUSBHUB3P_MODULE,

bool bAutoNetworking = true,

const uint8_t model = aMODULE_TYPE_USBHub3c)
Acroname: :BrainStem: :Module (module, bAutoNetworking, model)
{

for (int x = 0; x < aUSBHUB3C_NUM_APPS; x++) {
app[x].init (this, x);
(continues on next page)

1.2. USBHub3c 29

BrainStem Reference Manual, Release 2.11.1

for(int x = 0; x < aUSBHUB3C_NUM_PD_PORTS;

pd([x].init (this, x);

for(int x = 0; x < aUSBHUB3C_NUM_POINTERS;

pointer[x].init (this, x);

(continued from previous page)

x++) A

x++) |

store [aUSBHUB3C_STORE_INTERNAL_INDEX] .init (this, storelInternalStore);

store [aUSBHUB3C_STORE_RAM_ INDEX].init (this,

storeRAMStore) ;

store [aUSBHUB3C_STORE_EEPROM_INDEX].init (this, storeEEPROMStore) ;

system.init (this, 0);

for (int x = 0; x < aUSBHUB3C_NUM_TEMPERATURES; x++) {

temperature[x].init (this, x);

for(int x = 0; x < aUSBHUB3C_NUM_TIMERS;

timer[x].init (this, x);

hub.init (this, 0);

for(int x = 0; x < aUSBHUB3C_NUM_RAILS;

rail[x].init (this, x);

HubClass hub; /**< Hub Class */

x++) |

{

Acroname: :BrainStem: :AppClass app [aUSBHUB3C_NUM_APPS]; /**< App Class */
Acroname: :BrainStem: :PointerClass pointer [aUSBHUB3C_NUM_POINTERS]; /**< Pointer.

«Class */

Acroname: :BrainStem: :PowerDeliveryClass pd[aUSBHUB3C_NUM_USB_PORTS]; /**< Power.

wDelivery Class */

Acroname: :BrainStem: :RailClass rail [aUSBHUB3C_NUM_RAILS]; /*#*< Rail Class */
Acroname: :BrainStem: : StoreClass store[aUSBHUB3C_NUM_STORES]; /*#*< Store Class */

Acroname: :BrainStem: : SystemClass system;

/**< System Class */

Acroname: :BrainStem: : TemperatureClass temperature [aUSBHUB3C_NUM_TEMPERATURES]; /**

o< Temperature Class */

Acroname: :BrainStem: :TimerClass timer [aUSBHUB3C_NUM_TIMERS]; /**< Timer Class */

/** Port ID */

typedef enum PORT_ID : uint8_t {
kPORT_ID_0 = O,
kPORT_ID_ 1,
kPORT_ID_2,
kPORT_ID_3,
kPORT_ID_ 4,
kPORT_ID_5,
kPORT_ID_CONTROL,
kPORT_ID_POWER_C

} PORT_ID_t;

bi

30

Chapter 1. Devices

BrainStem Reference Manual, Release 2.11.1

Python

class USBHub3c (Module) :

BASE_ADDRESS = 6
NUMBER_OF_STORES = 3
NUMBER_OF_INTERNAL_SLOTS = 12
NUMBER_OF_RAM SLOTS = 1
NUMBER_OF_TEMPERATURES = 3
NUMBER_OF_TIMERS = 8
NUMBER_OF APPS = 4
NUMBER_OF_POINTERS = 4
NUMBER_OF_USB_PORTS = 8
NUMBER_OF RAILS = 7
NUMBER_OF_POWER_DELIVERY_ PORTS = 8
STORE_INTERNAL_INDEX = 0
STORE_RAM_INDEX = 1
STORE_EEPROM_INDEX = 2

def _ _init__ (self, address=BASE_ADDRESS, enable_auto_networking=True, model=defs.
<MODEL_USBHUB_3C) :

super (USBHub3c, self)._ _init__ (address, enable_auto_networking, model)

self.system = System(self, 0)

self.app = [App(self, i) for i in range (0, USBHub3c.NUMBER_OF_APPS)]

self.pointer = [Pointer(self, i) for i in range (0, USBHub3c.NUMBER_OF_
4POINTERS)]

self.store = [Store(self, Store.INTERNAL_STORE),

Store(self, Store.RAM_STORE),
Store(self, Store.EEPROM_STORE)]

self.temperature = [Temperature(self, 1) for i in range (0, USBHub3c.NUMBER_OF_
<TEMPERATURES)]

self.timer = [Timer (self, i) for i in range (0, USBHub3c.NUMBER_OF_TIMERS)]

self.hub = USBHub3c.Hub(self, O0)

self.rail = [Rail(self, i) for i in range (0, USBHub3c.NUMBER_OF_RAILS)]

self.pd = [PowerDelivery(self, i) for i in range (0, USBHub3c.NUMBER_OF_POWER_

<DELIVERY_PORTS)]

def connect (self, serial_ number, **kwargs):
return super (USBHub3c, self) .connect (Spec.USB, serial_number)

class Hub (USBSystem) :

def _ init_ (self, module, index):
super (USBHub3c.Hub, self).__init__ (module, index)
self.port = [Port (module, i) for i in range (0, USBHub3c.NUMBER_OF_USB_

<PORTS)]

In the code example above notice that the member variables app, pointer, pd, rail, store, system, temperature,
and timer are all instances of “entity” classes. Once the USBHub3c is instantiated and the device connected

the hardware functionality can be controlled via the entity interface.

C++

aUSBHub3c device;
device.discoverAndConnect (USB) ;
device.hub.port[0] .setEnabled (1) ;

Python

1.2. USBHub3c

BrainStem Reference Manual, Release 2.11.1

device = aUSBHub3c();
device.discoverAndConnect (brainstem.link.Spec.USB) ;
device.hub.port[0] .setEnabled (True) ;

Supported Entites

See the Module Entities section of the this document for a complete list of the entities supported by the USB-
Hub3c.

Ports

Each of the 6 regular Type-C ports of the USBHub3c implement separate and independently switched USB2/3
data lines, CC, Vconn and current-limited Vbus lines. USB power, data and SS data can be independently
disconnected for advanced USB testing applications. Control of various aspects of USB for each of the port is
effected through two entities combined into a Hub member and Power Delivery control is effected through the
Power Delivery entity.

USBHub3c Hub

There is a single “hub” instance within the module that controls the functionality primarily of the USBHub portion
of the USBHub3c. It is made up of two separate entities. The USB System controls USB hub functionality as
a whole, such as switching the upstream port setting enumeration delays and and controlling and monitoring
multiple ports at a time. The Port entity provides fine grained control and monitoring of each port within the hub.

USBHub3c Power Delivery

There is a Power Delivery entity for each port on the USBHub3c. The Power Delivery entity controls much of
the Power Delivery functionality of each of the Type-C ports.

USBHub3c System and Supporting entities

» System: Device level functionality.
* Rail: External rail controls supporting Loading on the Type-C ports.
» Temperature: External rail controls supporting Loading on the Type-C ports.

 Store: Access to non-volatile storage on the device.

Connections

Each USBHub3c is uniquely addressable and controllable from a host PC via the selected upstream port (0 by
default) or through a dedicated Control Port. Acroname’s BrainStem™ link is then established over the USB
input and allows a connection to the on-board controller in the USBHub3c. USBHub3c can be controlled via a
host running BrainStem APIs

The USBHub3c is capable of many features. These features are organized into groups called entities. Through
these entities we can access the vast features of the USBHub3c.

A complete list of all entities and functions can be found at the bottom of the page

32 Chapter 1. Devices

BrainStem Reference Manual, Release 2.11.1

Establishing Software Control

Software control of the features of the USBHub3c is done with the BrainStem API via a BrainStem link. Brain-
Stem links are done over USB and can be established via the currently selected upstream port (0-6) or the
Control Port. After one or more of these ports is connected to a host machine, a user can connect to it via
software API:

[device. link.discoverAndConnect (USB)]

When multiple Acroname devices are connected to a host, connecting to a specific hub can be done by pro-
viding the hub serial number. Further, all connected devices can be found using;

brainstem.discover.findAllModules (USB) "~ (Python)
Acroname: :BrainStem: :Link: :sDiscover ()~ (C++)

BrainStem Control Port

The USBHub3c also has a dedicated control channel on the Type C connector labeled “Control”. This is a full-
speed USB 2.0 connection for BrainStem interface only. No USB hub traffic can flow on this connection. When
a cable is connected to the Type C connector, the BrainStem link can only be established through the Control
Port, independent of the selected upstream port. Ports 0-6 are then used only for USB hub traffic to connect
upstream and downstream USB devices. When the Control Port is not used, the BrainStem link will share the
active upstream USB connection. Using the Control Port provides the ability to completely disconnect USB
upstream host connections while maintaining software control of the hub.

Host PC
S93-USBHUB-3C .
Hc::mmHnH1HzBaB4HsH§
o) g
£ @H :JH (_)H <—15 (—)E (—)H <—JH"

Control PC

q

Using Multiple Hosts with USBHub3c

The USBHub3c supports Acroname’s AnyPort™ technology. Any of the ports 0 - 6 can be selected as the
hub’s upstream facing port. This functionality is accessed via the USBSystem entity. In order to seamlessly
switch upstream ports, it is recommended that you use the device’s dedicated control port to connect to and
control the USBHub3c.

1.2. USBHub3c 33

BrainStem Reference Manual, Release 2.11.1

Device Drivers

The USBHub3c leverages common operating system drivers that do not require custom installations on modern
operating systems.

Some older operating systems may require the installation of a BrainStem USB driver information files to enable
software control. Installation details on installing USB drivers can be found within the BrainStem Development
Kit under the “drivers” folder. For example, Windows 7 requires the supplied INF to communicate with Brain-
Stem USB devices.

1.2.5 USBHub3c Module Entities

12C

API Documentation: [cpp] [python] [.NET] [LabVIEW]

BrainStem modules may have the ability to read, write data on up to 2 12C bus’s

12C Control

The USBHub3c has the ability to send and receive 12C messages through the back expansion connector.

The 12C interface is controlled through the following APIs:

stem. i
stem. i
stem. i
stem. i

stem. i

Port

.read () [cpp] [python] [NET] [LabVIEW]
.write () [cpp] [python] [NET] [LabVIEW]
.setPullup () [cpp] [python] [NET] [LabVIEW]
.setSpeed () [cpp] [python] [NET] [LabVIEW]
.getSpeed () [cpp] [python] [NET] [LabVIEW]

API Documentation: [cpp] [python] [.NET] [LabVIEW]

The Port Entity provides control over the most basic items related to a USB Port. This includes actions ranging
from a complete port enable and disable to the individual interface control. Voltage and current measurements
are also included for devices which support the Port Entity.

34

Chapter 1. Devices

BrainStem Reference Manual, Release 2.11.1

Port Control

The USBHub3c has a Port Entity for every Type C port on the device; however, not all ports have the same
capabilities. These ports can be referenced by their instance (port[x]) index.

Port Label Index (port[x])

0 0
1 1
2 2
3 3
4 4
5 5
Control 6
Power C 7

One of the most powerful features of the USBHub3c is its ability to turn ports on and off which is available on
Ports 0-5.

stem.hub.port [x] .setEnabled () [cpp] [python] [NET] [LabVIEW]
stem.hub.port [x] .getEnabled () [cpp] [python] [NET] [LabVIEW]

Manipulating just the USB Vbus line for a single port can be done by calling the following method on Ports 0-5.

stem.hub.port [x].setPowerEnabled () [cpp] [python] [NET] [LabVIEW]
stem.hub.port [x] .getPowerEnabled () [cpp] [python] [NET] [LabVIEW]

Manipulating Hi-Speed data and SuperSpeed data lines while not affecting the Vbus lines simultaneously for
a single port can be done by calling the following method for Ports 0-5.

stem.hub.port [x].setDataEnabled () [cpp] [python] [NET] [LabVIEW]
stem.hub.port [x] .getDatakEnabled () [cpp] [python] [NET] [LabVIEW]

Manipulating just the USB 2.0 Hi-Speed data lines for a single port can be done by calling the following for
Ports 0-5.

stem.hub.port [x].setDataHSEnabled () [cpp] [python] [NET] [LabVIEW]
stem.hub.port [x] .getDatalHSEnabled () [cpp] [python] [NET] [LabVIEW]

Even further granularity can be achieved through Hi-Speed 1 and Hi-Speed 2 control methods for Ports 0-5.

stem.hub.port [x] .setDataHS1Enabled () [cpp] [python] [NET] [LabVIEW]
stem.hub.port [x].getDataHSl1Enabled () [cpp] [python] [NET] [LabVIEW]

1.2. USBHub3c 35

BrainStem Reference Manual, Release 2.11.1

stem.hub.port [x].setDataHS2Enabled () [cpp] [python] [NET] [LabVIEW]
stem.hub.port [x] .getDataHS2Enabled () [cpp] [python] [NET] [LabVIEW]

Manipulating just the USB 3.1 SuperSpeed data lines for a single port can be done by calling the following
method for Ports 0-5.

stem.hub.port [x].setDataSSEnabled () [cpp] [python] [NET] [LabVIEW]
stem.hub.port [x] .getDataSSEnabled () [cpp] [python] [NET] [LabVIEW]

Just as with the Hi-Speed lines the USBHub3c also has granular control of the SuperSpeed 1 and SuperSpeed
2 lines.

stem.hub.port [x].setDataSSl1Enabled () [cpp] [python] [NET] [LabVIEW]
stem.hub.port [x] .getDataSS1Enabled () [cpp] [python] [NET] [LabVIEW]

stem.hub.port [x].setDataSS2Enabled () [cpp] [python] [NET] [LabVIEW]
stem.hub.port [x] .getDataSS2Enabled () [cpp] [python] [NET] [LabVIEW]

The CC lines can also be individually controlled.

stem.hub.port [x].setCCEnabled() [cpp] [python] [NET] [LabVIEW]
stem.hub.port [x] .getCCEnabled () [cpp] [python] [NET] [LabVIEW]

As you would expect at this point granular control is also provided.

stem.hub.port [x].setCClEnabled () [cpp] [python] [NET] [LabVIEW]
stem.hub.port [x] .getCClEnabled () [cpp] [python] [NET] [LabVIEW]

stem.hub.port [x].setCC2Enabled () [cpp] [python] [NET] [LabVIEW]
stem.hub.port [x] .getCC2Enabled () [cpp] [python] [NET] [LabVIEW]

Finally we come to Vconn control; however, this one overlaps with CC control because Vconn is what the
unused CC line becomes (if needed). i.e. if CC1 is used for orientation and/or PD communication then CC2
will become Vconn (Vconn2) if it is enabled. If you are unaware of which pin is being used for Vconn you can
simply call:

stem.hub.port [x].setVconnEnabled () [cpp] [python] [NET] [LabVIEW]
stem.hub.port [x] .getVconnEnabled () [cpp] [python] [NET] [LabVIEW]

36 Chapter 1. Devices

BrainStem Reference Manual, Release 2.11.1

and the USBHub3c will take care of the guess work for you. If you are aware of which line is being used for
Vconn you can use the granualar control just as we have outlined above.

stem.hub.port [x] .setVconnlEnabled () [cpp] [python] [NET] :[LabVIEW]
stem.hub.port [x] .getVconnlEnabled () [cpp] [python] [NET] [LabVIEW]

stem.hub.port [x].setVconn2Enabled () [cpp] [python] [NET] [LabVIEW]
stem.hub.port [x] .getVconn2Enabled () [cpp] [python] [NET] [LabVIEW]

Voltage and Current Measurements

The USBHub3c provides Voltage and Current measurements for both the Vbus and Vconn lines. These values
can be acquired for all 8 ports through the following APIs

stem.hub.port [x] .getVbusVoltage () [cpp] [python] [NET] [LabVIEW]
stem.hub.port [x].getVbusCurrent () [cpp] [python] [NET] [LabVIEW]

stem.hub.port [x] .getVconnVoltage () [cpp] [python] [NET] [LabVIEW]
stem.hub.port [x] .getVconnCurrent () [cpp] [python] [NET] [LabVIEW]

Power Modes

The ports of the USBHub3c are capable of providing power in multiple formats. The default is Power Delivery
(PD), but that can be changed to things like: Standard Downstream Port (SDP), Charging Downstream Port
(CDP) / Dedicated Charging Port (DCP), or even Qualcomm Quick Charge (QC) 3 and 4. These modes can
be set through:

stem.hub.port [x].setPowerMode () [cpp] [python] [NET] [LabVIEW]
stem.hub.port [x] .getPowerMode () [cpp] [python] [NET] [LabVIEW]

Power Mode Value Define

None 0 portPowerMode_none_Value
SDP 1 portPowerMode_sdp_Value
CDP/DCP 2 portPowerMode_cdp_dcp_Value
QC 3 portPowerMode_qgc_Value
PD 4 portPowerMode_pd Value
PS 5 portPowerMode_ps_Value

6

USB-C portPowerMode_usbc_Value

Note: The Power Modes can only be changed when the port power is disabled.

1.2. USBHub3c 37

BrainStem Reference Manual, Release 2.11.1

Port Mode

As outlined in the “Port Control” section the USBHub3c can individually manipulate almost every pin on the
Type-C connector; however, depending on your application that might require multiple function calls in order to
configure the port how you want it. Port Mode on the other hand is a one stop shop that allows you to pick and
choose which lines you want enabled or disabled through a single call. Additionally, it has a few other features
tucked away inside of it.

stem.hub.port [x].setMode () [cpp] [python] [NET] [LabVIEW]
stem.hub.port[x] .getMode () [cpp] [python] [NET] [LabVIEW]

Port Mode ltem Bit Value Define

Power Enable 0 0/1 portPortMode_powerEnabled_Bit

HS 1 Enable 1 01 portPortMode_HS1Enabled_Bit

HS 2 Enable 2 0/1 portPortMode_HS2Enabled_Bit

SS 1 Enable 3 01 portPortMode_SS1Enabled_Bit

SS 2 Enable 4 0/1 portPortMode_SS2Enabled _Bit

CC 1 Enable 5 01 portPortMode CC1Enabled_Bit

CC 2 Enable 6 0/1 portPortMode_CC2Enabled_Bit

Vconn 1 Enable 7 01 portPortMode_Vconn1Enabled Bit

Vconn 2 Enable 8 01 portPortMode_Vconn2Enabled Bit

Power Mode: Offset 16 portPortMode_portPowerMode_Offset

Power Mode: Mask 0x7 portPortMode portPowerMode Mask

Power Mode: None 16-18 0 portPortMode_portPowerMode_none_Value

Power Mode: SDP 16-18 1 portPortMode_portPowerMode_sdp_Value

Power Mode: CDP/DCP 16-18 2 portPortMode_cdp_dcp_Value

Power Mode: QC 16-18 3 portPortMode_portPowerMode_qc_Value

Power Mode: PD 16-18 4 portPortMode_portPowerMode_pd_Value

Power Mode: PS 16-18 5 portPortMode_portPowerMode_ps_Value

Power Mode: USB-C 16-18 6 portPortMode_portPowerMode_usbc_Value
Data Role

The data role describes the current configuration of the port in regards to its data direction. In most cases this
evaluates to an Upstream Facing Port (UFP) or a Downstream Facing Port (DFP). Upstream in this case means
the host side of the port and Downstream refers to the device side. The Data Role can be aquired through:

stem.hub.port [x] .getDataRole ()

[cpp] [python] [NET] [LabVIEW]

Data Role Value Define

Disabled 0 portDataRole_Disabled Value
Upstream 1 portDataRole_Upstream_Value
Downstream 2 portDataRole_Downstream_Value
Control 3 portDataRole_Control_Value

38

Chapter 1. Devices

BrainStem Reference Manual, Release 2.11.1

Port Limits and Modes

At the Port level the user has the ability to define current limit and/or a power limit.

stem.hub.port [x].setCurrentLimit () [cpp] [python] [NET] [LabVIEW]
stem.hub.port [x] .getCurrentLimit () [cpp] [python] [NET] [LabVIEW]

stem.hub.port [x] .setPowerLimit () [cpp] [python] [NET] [LabVIEW]
stem.hub.port [x] .getPowerLimit () [cpp] [python] [NET] [LabVIEW]

If either of these values are exceed then the USBHub3c will then apply on of the following modes

stem.hub.port [x].setCurrentLimitMode () [cpp] [python] [NET] [LabVIEW]
stem.hub.port [x] .getCurrentLimitMode () [cpp] [python] [NET] [LabVIEW]

stem.hub.port [x] .setPowerLimitMode () [cpp] [python] [NET] [LabVIEW]
stem.hub.port [x] .getPowerLimitMode () [cpp] [python] [NET] [LabVIEW]

Available Power

One of the unique features of the USBHub3c is its ability to manage input and output power. Because of smart
charging technologies like PD we know exactly how much power we have access too. That input power must
then be shared across all of the ports. The following function allows the user to request the amount of power
that is currently allocated to the port in question.

stem.hub.port [x] .getAvailablePower () [cpp] [python] [NET] [LabVIEW]

Accumulated Power

The USBHub3c is capable of monitoring the accumulated power (energy) it has sank or sourced on both the
VBus and VConn lines of each port. This value is presented as mWh.

stem.hub.port [x] .getVbusAccumulatedPower () [cpp] [python] [NET] [LabVIEW]
stem.hub.port [x].getVconnAccumulatedPower () [cpp] [python] [NET] [LabVIEW]

The accumulated power is set to zero and the accumulation period is restarted with these commands.

stem.hub.port[x].resetVbusAccumulatedPower () [cpp] [python] [NET] [LabVIEW]
stem.hub.port [x] .resetVconnAccumulatedPower () [cpp] [python] [NET] [LabVIEW]

1.2. USBHub3c 39

BrainStem Reference Manual, Release 2.11.1

Downstream Data Speed

The USBHub3c can detect if a device has been enumerated. Additionally, it can detect at what speed a device
has enumerated at.

stem.hub.port[x].getDataSpeed() [cpp] [python] [NET] [LabVIEW]

Data Speed Bit Value Define

1.5 Mbit/s 0 0/1 portDataSpeed_Is_1p5M_Bit

12 Mbit/s 1 0/1 portDataSpeed_fs_12M_Bit

480 Mbit/s 2 0/1 portDataSpeed_hs_480M_Bit

5 Gbit/s 3 0/1 portDataSpeed_ss_5G_Bit

10 Gbit/s 4 0/1 portDataSpeed_ss_10G_Bit

USB 2.0 6 0/1 portDataSpeed_Connected 2p0_Bit
USB 3.0 7 0/1 portDataSpeed_Connected 3p0_Bit

Power Delivery

API Documentation: [cpp] [python] [.NET] [LabVIEW]

Power Delivery or PD is a power specification which allows more charging options and device behaviors within
the USB interface. This Entity will allow you to directly access the vast landscape of PD.

When the capabilities of a PD system are fully realized everything in the system is “smart”. That includes the
device, the host and even the cable. All of these elements contain electronics that identify themselves and what
they are capable of doing. Because of this complexity it is important to align on a few terms that will be used
throughout this Entity.

Partner This refers to the side of the PD connection in question. The possible options for this parameter are.

* Local Indicates the context/perspective of the Acroname device you are communicating with through a
BrainStem connection.

+ Remote The context/perspective of anything other than the Acroname device.

Partner Type Value Define

Local 0 powerdeliveryPartnerLocal
Remote 1 powerdeliveryPartnerRemote

Power Role Indicates the direction of power. This value is typically used in the context of a “Partner”. i.e. The
remote partner is sinking, which would mean the local partner is sourcing. The possible options for this context
are:

+ Sink Indicates that the partner is taking power in/from.
+ Source Indicates that the partner is providing power out/to.
Power Roles are also used in the context of what a port is capable of doing.

+ Sink Device is capable of consuming power.

40 Chapter 1. Devices

BrainStem Reference Manual, Release 2.11.1

» Source Device is capable of producing power.

« Sink/Source Device is capable of both consuming or producing power. Dual Role Port (DRP)

Power Role Value Define

Disabled 0 powerdeliveryPowerRoleDisabled
Source 1 powerdeliveryPowerRoleSource
Sink 2 powerdeliveryPowerRoleSink
Source/Sink 3 powerdeliveryPowerRoleSourceSink

Power Data Objects (PDO)

» PDO’s define what a device is capable of doing in the world of Power Delivery. PDO’s are bit packed
integers defined by the PD Specification which vary in meaning based on the type of PDO.

Request Data Objects (RDO)

» RDO’s are the final agreement after successful Power Delivery negotiations. This RDO is always sent by
the sinking device and is the result of the sources advertised PDO’s and the needs/requirements of the
sinking device. Only one RDO exists per valid connection.

Manipulating PDO’s and RDO’s

The Power Delivery specification defines a large number of Data Objects and the USBHub3c is capable of
manipulating and modifying most of them in some fashion. The most common are PDO’s and RDQO’s which
were defined above. Direct manipulation is quite a complex process and is a feature of the Pro version only. It
is highly recommended that users of these features first experiment with the Power Rule Editor within HubTool.
Once you know the values you want to use manipulation can be done through:

stem.pd[x] .setPowerDataObject () [cpp] [python] [NET] [LabVIEW]
stem.pd[x] .getPowerDataObject () [cpp] [python] [NET] [LabVIEW]

stem.pd[x] .setRequestDatalObject () [cpp] [python] [NET] [LabVIEW]
stem.pd[x] .getRequestDataObject () [cpp] [python] [NET] [LabVIEW]

Power Roles Preferred

Preferred Power Role Value Define

None 0 pdPowerRolePreferred_None
Source 1 pdPowerRolePreferred_Source
Sink 2 pdPowerRolePreferred_Sink

1.2. USBHub3c 41

BrainStem Reference Manual, Release 2.11.1

Connection State

Connection State Value Define

None 0 pdConnectionState None

Source 1 pdConnectionState_Source

Sink 2 pdConnectionState_Sink

Powered Cable 3 pdConnectionState_PoweredCable
Powered Cable with Sink 4 pdConnectionState_PoweredCableWithSink

Requests

Given the nature of Power Delivery there are only so many things that are within the direct control of the local
USBHub3c. Many of the items on the remote side of the USBHub3c are merely request. In other words items

in this category not guaranteed to happen.

stem.pd[x] .request () [cpp] [python] [NET] [LabVIEW]

Request Value Define

Hard Reset 0 pdRequestHardReset

Soft Reset 1 pdRequestSoftReset

Data Reset 2 pdRequestDataReset

Power Role Swap 3 pdRequestPowerRoleSwap

Power Fast Role Swap 4 pdRequestPowerFastRoleSwap

Data Role Swap 5 pdRequestDataRoleSwap

Vconn Swap 6 pdRequestVconnSwap

Sink Go to Min 7 pdRequestSinkGoToMinimum

Remote Source PDOs 8 pdRequestRemoteSourcePowerDataObjects
Remote Sink PDOs 9 pdRequestRemoteSinkPowerDataObjects

Remote Source Extended Capabilities 10
Remote Sink Extended Capabilities 11

Status 12
PPS Status 13
Battery Capabilities 14
Battery Status 15
Manufacturer Info Sop 16
Manufacturer Info Sopp 17
Manufacturer Inof Soppp 18
Discover Identity Sop 19
Discover Identity Sopp 20
Discover Identity Soppp 21
Revision 22
Source Info 23
Country Code 24
Country Info 25

pdRequestRemoteSourceExtendedCapabilities
pdRequestRemoteSinkExtendedCapabilities
pdRequestStatus

pdRequestPPSStatus
pdRequestBatteryCapabilities
pdRequestBatteryStatus
pdRequestManufacturerinfoSop
pdRequestManufacturerinfoSopp
pdRequestManufacturerinfoSoppp
pdRequestDiscoverldentitySop
pdRequestDiscoverldentitySopp
pdRequestDiscoverldentitySoppp
pdRequestRevision

pdRequestSourcelnfo
pdRequestCountryCode
pdRequestCountrylnfo

Errors return from this function call only indicate the success of sending the request and do not reflect the suc-

42

Chapter 1. Devices

BrainStem Reference Manual, Release 2.11.1

cess of the actual request. To find the status of the request you can investigate the outcome of the connection
or check the most recent status of the PD stack.

stem.pd[x] .requestStatus () [cpp] [python] [NET] [LabVIEW]

Cable Orientation

Although the Type C connector has no visible orientation the connector does have electrical orientation which
directly correlates to the Communications Chanel (CC) strapping internal to the cable. The orientation be be
obtained via:

stem.pd[x] .getCableOrientation () [cpp] [python] [NET] [LabVIEW]

Orientation Value Define

Invalid 0 pdCableCOrientation_Invalid
CC1/A Side 1 pdCableCOrientation_CC1
CC2/B Side 2 pdCableQOrientation_CC2
Cable Type
Cable Type Value Define
Invalid 0 pdCableType_Invalid
Passive 1 pdCableType_Passive
Active 2 pdCableType_Active
Override

The USB C connector by default follows rules around maximum cable current and budgetted power. In some
test applications, including ones with a Universal Orientation Cable, the port should ignore those rules which
is why we have exposed override bits to allow for disabling of specific behavior. Below are the get/set routines
for overrides and the bit definitions.

stem.pd[x] .getOverride () [cpp] [python] [NET] [LabVIEW]
stem.pd[x] .setOverride () [cpp] [python] [NET] [LabVIEW]

1.2. USBHub3c 43

BrainStem Reference Manual, Release 2.11.1

Name Bit Definition

Cable 0 overrides the cable current limiting to 3A unless it's an emarked cable
Current
Port 1 Overrides the port power budgetting and just allows full power always
Power
Auto 2 Overrides the auto discovery feature. With override true the hub will only establish a basic
Discov- power connection and wont ask for additional vendor information.
ery
Rail

API Documentation: [cpp] [python] [.NET] [LabVIEW]

The Rail entity provides power control to connected devices on some modules. Check the module datasheet
to determine if the module has this capability.

the Rail entity controls power provided to downstream devices, it has the ability to enable and disable power,
can read voltage on the rail, and provides current consumption information on some modules. There are ad-
ditional capabilities that certain modules provide which enhance basic power delivery through Kelvin sensing,
or by bringing online separate power management functionality.

Certain modules may provide more than one power rail. These are independently controlled and can be ac-
cessed via the entity index.

Rail Control

The USBHub3c has the ability to redirect power from ports 0-5 to an external connection. This applies to both
sinking and sourcing and allows load testing of connected devices. Additionally there is a 5V rail that can be
used as a trigger or even powering external devices.

Rail Index: rail[x]

Port 0
Port 1
Port 2
Port 3
Port 4
Port 5
5 Volt

OO~ WN—=O

Rails are controlled through the following APls:

stem.rail[x].setEnable () [cpp] [python] [NET] [LabVIEW]
stem.rail[x] .getEnable () [cpp] [python] [NET] [LabVIEW]

44 Chapter 1. Devices

BrainStem Reference Manual, Release 2.11.1

System

API Documentation: [cpp] [python] [[NET] [LabVIEW]

Every BrainStem module includes a single system entity. The system entity allows the retrieval and manipula-
tion of configuration settings like the module address and input voltage, control over the user LED, as well as
other functionality.

Serial Number

Every USBHub3c is assigned a unique serial number at the factory. This facilitates an arbitrary number of
USBHub3c devices attached to a host computer. The following method call can retrieve the unique serial
number for each device.

stem.system.getSerialNumber () [cpp] [python] [NET] [LabVIEW]

Saved Settings

Some entities can be configured and saved to non-volatile memory. This allows a user to modify the startup
and operational behavior for the USBHub3+ away from the factory default settings. Saving system settings
preserves the settings as the new default. Most changes to system settings require a save and reboot before
taking effect. For example, upstream and downstream USB Boost settings will not take effect unless a system
save operation is completed, followed by a reset or power cycle. Use the following command to save changes
to system settings before reboot:

stem.system.save () [cpp] [python] [NET] [LabVIEW]

System Power

The USBHub3c is designed to accept power from either a Type-C PD port or from the unregulated power
connector.

In the case of a Type-C PD source all power can be accounted for through Power Delivery (PD) negotiations.
For instance, if a PD source advertises 100 Watts; that means we can provide 100 Watts of power to the
connected sinking devices. The same can be said for a 60 Watt PD source. This value represents the maximum
amount of power the USBHub3c can budget for all of its sinking devices. This value can be acquired through:

stem.system.getPowerLimit () [cpp] [python] [NET] [LabVIEW]

It is possible that the limit of your PD source may not match that of what is being advertised by the function
above. The contributing factors can be determined by checking the state of the power limit.

stem.system.getPowerLimitState () [cpp] [python] [NET] [LabVIEW]

1.2. USBHub3c 45

BrainStem Reference Manual, Release 2.11.1

In the case of the unregulated power connector the power budgeting gets a bit more tricky because there is
no way of knowing the supplies maximum power. To resolve this the user is allowed to define a power limit
maximum that matches that of the connected power supply.

stem.system.setPowerLimitMax () [cpp] [python] [NET] [LabVIEW]
stem.system.getPowerLimitMax () [cpp] [python] [NET] [LabVIEW]

Note: Failure to correctly configure this value can result in undefined behavior such as resets.

These values only apply when the input power source is that of the unregulated power connector.

stem.system.getInputPowerSource () [cpp] [python] [NET] [LabVIEW]

Power Budgeting and Behavior

As we alluded to in the System power section the USBHub3c has to be a bit clever about accounting for all
input and output power. The method by which an input power source is selected and used is referred to as
Input Power Behavior. It can be configured through

stem.system.setInputPowerBehavior () [cpp] [python] [NET] [LabVIEW]
stem.system.getInputPowerBehavior () [cpp] [python] [NET] [LabVIEW]

Some behaviors require additional configuration. In most cases this is a list of port numbers that define which
ports should be prioritized for input power.

stem.system.setInputPowerBehaviorConfig() [cpp] [python] [NET] [LabVIEN]
stem.system.getInputPowerBehaviorConfig() [cpp] [python] [NET] [LabVIEW]

Voltage and Current Monitoring

Temperature

API Documentation: [cpp] [python] [[NET] [LabVIEW]

Certain modules have a temperature measurement available. The temperature entity gives access to these
measurements. Check your module datasheet to see if your module has a temperature entity.

46 Chapter 1. Devices

BrainStem Reference Manual, Release 2.11.1

System Temperature

The temperature of the USBHub3c can be measured with:

stem.temperature[0] .getTemperature (uC) [cpp] [python] [NET] [LabVIEW]

where temperature is in micro-degress Celcius.

Uart

API Documentation: [cpp] [python] [.NET] [LabVIEW]

The UART entity is a class which allows the configuration of a specified uart port.

Uart Control

The USBHub3c has the ability to be controlled through an RS232 interface on the external expansion con-
nector of the USBHub3c. For additional information about the serial protocol, reference USBHub3c Serial
Communication Feature

Uart Protocols
The USBHub3c has two protocol values enumerated.

Value Description

0 Disabled/Undefined
1 Extron Compatible Protocol

Uart APIs

Uarts are controlled through the following APls:

stem.uart .setEnable () [cpp] [python] [NET] [LabVIEW]

.getEnable () [cpp] [python] [NET] [LabVIEW]

.setBaudRate () [cpp] [python] [NET] [LabVIEW]

.getBaudRate () [cpp] [python] [NET] [LabVIEW]

.setProtocol () [cpp] [python] [NET] [LabVIEW]
() [NET]

[cpp] [python] [NET] [LabVIEW]

stem.uart
stem.uart
stem.uart
stem.uart

stem.uart .getProtocol

1.2. USBHub3c 47

BrainStem Reference Manual, Release 2.11.1

USB System

API Documentation: [cpp] [python] [[NET] [LabVIEW]

The USBSystem class provides high level control of the lower level Port Entity

Upstream Control

The USBHub3c has the unique ability to designate any of its full featured (0-5) ports as the upstream connec-
tion. This is very useful for moving devices between hosts or testing dual role port functionality.

stem.hub.setUpstream () [cpp] [python] [NET] [LabVIEW]
stem.hub.getUpstream() [cpp] [python] [NET] [LabVIEW]

Enumeration Delay

Once a USB device is detected by the USBHub3c it is possible to delay its connection to an upstream host
computer and subsequent enumeration on the USB bus. The enumeration delay can mitigate or eliminate
host kernel instabilities by forcing devices to enumerate in slow succession, allowing a focus on validation of
drivers and software. The enumeration delay is configured in milliseconds, representing the time delay between
enabling each successive port. Enumeration delay is applied when the hub powers on or when a new upstream
connection is made.

stem.hub.setEnumerationDelay () [cpp] [python] [NET] [LabVIEW]
stem.hub.getEnumerationDelay () [cpp] [python] [NET] [LabVIEW]

Power Behavior

Ports 0-5 of the USBHub3c are all capable of sourcing 100 watts pending the system has access to that amount
of power. In most cases 500 Watts is not available and therefore the system has to be cleaver about how it
allocates power. The method in which power is allocated across these ports is called the power behavior and
it can be configured through

stem.hub.setPowerBehavior () [cpp] [python] [NET] [LabVIEW]
stem.hub.getPowerBehavior () [cpp] [python] [NET] [LabVIEW]

Some behaviors require additional configuration. In most cases this is a list of port numbers that define which
ports should be prioritized for power allocation.

stem.hub.setPowerBehaviorConfig () [cpp] [python] [NET] [LabVIEW]
stem.hub.getPowerBehaviorConfig () [cpp] [python] [NET] [LabVIEW]

48 Chapter 1. Devices

BrainStem Reference Manual, Release 2.11.1

Data Behavior

Many devices are now capable of being Dual Role Ports (DRP) meaning that they can be both a device (down-
stream) and a host (upstream). These devices can request to become a host at anytime which may or may not
contradict the users desired upstream setting. The method in which these events are handled is referred to as
data behavior. Just as power behavior it can be configured with a similar set of APIs

List of Available Data Behaviors for USBHub3c

Behavior Value Define

Hard Coded 0 usbsystemDataBehavior_HardCoded
Reserved 1 usbsystemDataBehavior_Reserved
Port Priority 2 usbsystemDataBehavior PortPriority

Hard Coded (Default Configuration)

The Hard Coded data behavior is used to fix the Upstream port to a single port and not allow it to move except
for a command through the Set Upstream AP or via the Serial Communication Feature.

Port Priority

The Port Priority data behavior prioritizes making the Upstream port the lowest numbered port on the front of
the USBHub3c that is capable of being an Upstream port. This means a USB-C connection that’s a sink or a
USB PD connection that has described itself as USB Coms Capable and can act as a Host.

Relevant API's

stem.hub.setDataRoleBehavior () [cpp] [python] [NET] [LabVIEW]
stem.hub.getDataRoleBehavior () [cpp] [python] [NET] [LabVIEW]

Some behaviors require additional configuration. In most cases this is a list of port numbers that define which
ports should be prioritised for power allication.

stem.hub.setDataRoleBehaviorConfig () [cpp] [python] [NET] [LabVIEW]
stem.hub.getDataRoleBehaviorConfig () [cpp] [python] [NET] [LabVIEW]

1.2. USBHub3c 49

BrainStem Reference Manual, Release 2.11.1

High Level Control of the Port Entity

The USBSystem Entity and the Port Entity are capable of doing many of the same things its merely their per-
spective. The PortClass acts on individual elements where as the USBSystemClass acts on all of the ports.
For instance if you wanted to enable all of the ports of the USBHub3c you would need to loop through each
index and individually enable each port. With the USBSystem class you can do the exact same thing, but with
a single API call with each bit representing a given port.

//USBSystem Entity method.
stem.hub.setEnabledList (0x3F); //0b0011 1111 bits 0-5 set high = ports 0-5

//Port Entity method.

for(int x = 0; x <= 5; x++) {
stem.hub.port [x].setEnabled (true);

I3

stem.hub.setEnabledList () [cpp] [python] [NET] [LabVIEW]
stem.hub.getEnabledList () [cpp] [python] [NET] [LabVIEW]

The same logic can also be applied to Data Role, Mode and State elements, but with slightly different interfaces
depending on the size of the data.

stem.hub.setModelList () [cpp] [python] [NET] [LabVIEW]
stem.hub.getModelList () [cpp] [python] [NET] [LabVIENW]

Data Role and State are slightly different in that there are only get calls for these functions.

stem.hub.getDataRolelist () [cpp] [python] [NET] [LabVIEW]

stem.hub.getStatelList () [cpp] [python] [NET] [LabVIEW]

Legacy Support

Previous Acroname USB products made use of the USB Entity for measurements, configuration and control;
however, the USBHub3c aims to organize these capabilities in a cleaner fashion through the use of the all new
Port and USBSystem Entities.

In efforts to ease this transition we have added Legacy support to the USBHub3c by implementing limited USB
Entity functionally. The following functions of the USB Entity will still behave as they did in previous Acroname
USB products.

50 Chapter 1. Devices

BrainStem Reference Manual, Release 2.11.1

Port

stem.usb.setPortEnable (channel) [cpp] [python] [NET] [LabVIEW]

stem.usb.setPortDisable (channel) [cpp] [python] [NET] [LabVIEW]

stem.usb.getPortState (channel) [cpp] [python] [NET] [LabVIEW]

Power

stem.

stem.

usb.

usb.

Voltage

stem.

usb.

Current

stem.
stem.

stem.

Data

stem.
stem.
stem.
stem.

stem.

stem

stem.

stem.

stem.

usb.

usb

usb.

usb.
usb.
usb.
usb.
usb.
.usb.
usb.

usb.

usb

Port State Iltem Bit Value
VBus is enabled 6 0/1
USB2A is enabled 4 0/1
USB2B is enabled 5 0/1
SuperSpeedA is enabled 7 0/1
SuperSpeedB is enabled 8 0/1
CC1 is enabled 12 01
CC2is enabled 13 0/1

setPowerkEnable (channel) [cpp] [python] [NET] [LabVIEW]

setPowerDisable (channel) [cpp] [python] [NET] [LabVIEW]

getPortVoltage (channel, pV) [cpp] [python] [NET] [LabVIEW]

getPortCurrent (channel, pA) [cpp] [python] [NET] [LabVIEW]

.getPortCurrentlLimit (channel, pA) [cpp] [python] [NET] [LabVIEW]

setPortCurrentLimit (channel, pA) [cpp] [python] [NET] [LabVIEW]

setDataEnable (channel) [cpp] [python] [NET] [LabVIEW]
setDataDisable (channel) [cpp] [python] [NET] [LabVIEW]
setHiSpeedDataEnable (channel [cpp] [python] [NET] [LabVIEW]
setHiSpeedDataDisable (channel) [cpp] [python] [NET] [LabVIEW]
setSuperSpeedDataknable (channel) [cpp] [python] [NET] [LabVIEW]
setSuperSpeedDataDisable (channel) [cpp] [python] [NET] [LabVIEW]
setCClEnable (channel, enable) [cpp] [python] [NET] [LabVIEW]

getCClEnable (channel, enable) [cpp] [python] [NET] [LabVIEW]

.setCC2Enable (channel, enable) [cpp] [python] [NET] [LabVIEW]

1.2. USBHub3c 51

BrainStem Reference Manual, Release 2.11.1

stem.usb.getCC2Enable (channel, enable) [cpp] [python] [NET] [LabVIEW]

Complete list of Supported Entities and Functions

Entity Class

Entity Option Variable(s) Notes

store[0-2]

system[0]

temperature[0-2]

getSlotState

loadSlot

unloadSlot

slotEnable

slotDisable
getSlotCapacity
getSlotSize
setSlotLocked
getSlotLocked
getModule
getModuleBaseAddress
setRouter

getRouter

setHBInterval
getHBInterval

setLED

getLED

getVersion

getModel
getHardwareVersion
getSerialNumber

save

reset

logEvents

getUptime
getTemperature
getMinimumTemperature
getMaximumTemperature
getinputPowerSource
getinputVoltage
getinputCurrent
getModuleHardwareOffest
getModuleSoftwareOffset
getRouterAddressSetting
routeToMe
getUnregulatedVoltage
getUnregulatedCurrent
getPowerLimit
getPowerLimitMax
setPowerLimitMax
getName

setName
resetDeviceToFactoryDefaults
getValue

getValueMax
getValueMin

continues on next page

52

Chapter 1.

Devices

BrainStem Reference Manual, Release 2.11.1

Table 3 - continued from previous page

Entity Class

Entity Option

Variable(s) Notes

port[0-7]

getVbusVoltage
getVbusCurrent
getVconnVoltage
getVconnCurrent
getPowerEnabled
setPowerEnabled
getPowerMode
setPowerMode
getEnabled
setEnabled
getDataEnabled
setDataEnabled
getDataHSEnabled
setDataHSEnabled
getDataHS1Enabled
setDataHS1Enabled
getDataHS2Enabled
setDataHS2Enabled
getDataSSEnabled
setDataSSEnabled
getDataSS1Enabled
setDataSS1Enabled
getDataSS2Enabled
setDataSS2Enabled
getVconnEnabled
setVconnEnabled
getVconn1Enabled
setVconniEnabled
getVconn2Enabled
setVconn2Enabled
getDataRole
getDataSpeed
getCCEnabled
setCCEnabled
getCC1Enabled
setCC1Enabled
getCC2Enabled
setCC2Enabled
getCCBias
setCCBias

getMode

setMode

getState

getName

setName
getCurrentLimit
setCurrentLimit
getAllocatedPower
getAvailablePower
getPowerLimit

continues on next page

1.2. USBHub3c

53

BrainStem Reference Manual, Release 2.11.1

Table 3 - continued from previous page

Entity Class

Entity Option Variable(s) Notes

USBSystem [0]

PowerDelivery [0-8]

UARTIO]

setPowerLimit
getVbusAccumulatedPower
resetVbusAccumulatedPower
getVconnAccumulatedPower
resetVconnAccumulatedPower
getHSBoost

setHSBoost
getDataHSRoutingBehavior
setDataHSRoutingBehavior
getDataSSRoutingBehavior
setDataSSRoutingBehavior
getUpstream

setUpstream
setDataRoleBehavior
getDataRoleBehavior
getConnectionState
getNumberOfPowerDataObjects
setPowerDataObiject
getPowerDataObject
resetPowerDataObjectToDefault
getPowerDataObjectList
setPowerDataObjectEnabled
getPowerDataObjectEnabled
getPowerDataObjectEnabledList
setRequestDataObiject
getRequestDataObject
getPowerRole

setPowerRole
getPowerRolePreferred
setPowerRolePreferred
getCableVoltageMax
getCableCurrentMax
getCableSpeedMax
getCableType
getCableOrientation
setOverrides

getOverrides

request
setCurrentLimitBehavior
getCurrentLimitBehavior
getPeakCurrentConfiguration
setPeakCurrentConfiguration
getFastRoleSwapCurrent
setFastRoleSwapCurrent
resetEntityToFactoryDefaults
setEnable

getEnable

setBaudRate

getBaudRate

setProtocol

continues on next page

54

Chapter 1.

Devices

BrainStem Reference Manual, Release 2.11.1

Table 3 - continued from previous page

Entity Class Entity Option Variable(s) Notes
getProtocol

rail[0-6] setEnable
getEnable

i2c[0] read
write
setPullup
setSpeed
getSpeed

usb[0] setPortEnable Ports 0-5
setPortDisable Ports 0-5
setDataEnable Ports 0-5
setDataDisable Ports 0-5
setHiSpeedDataEnable Ports 0-5
setHiSpeedDataDisable Ports 0-5
setSuperSpeedDataEnable Ports 0-5
setSuperSpeedDataDisable Ports 0-5
setPowerEnable Ports 0-5
setPowerDisable Ports 0-5
setCC1Enable Ports 0-5
getCC1Enable Ports 0-5
setCC2Enable Ports 0-5
getCC2Enable Ports 0-5
getPortVoltage Ports 0-5
getPortCurrent Ports 0-5
getPortCurrentLimit Ports 0-5
setPortCurrentLimit Ports 0-5

1.2.6 USBHub3c Software Features

External Load Testing

The External Load software feature allows for load testing of devices connected to ports 0-5 by way of an
external connector on the back of the hub. This connector allows you to wire the USBHub3c to programmable
or resistive loads so that you can test if your device is sourcing power properly.

1.2. USBHub3c 55

BrainStem Reference Manual, Release 2.11.1

Electronic
Load

.. Acroname

Control 0 1 2 3 4 5
nﬂu nﬂn nﬂn = = =
Jo o0 00 00 FD PD PD
' oo oo oo '
' o o o |
: TI— S —— S — S — S — S — I'
K Qutlets/Power Bricks with Power Delivery 9

This software feature can be exploited through the USBHub3c Rail Entity.
Although the external load feature will work in any mode it is only recommended to be used when the USBHub3c
is sinking.

Example:

C++

-

static const int TEST_PORT = 1;

aUSBHub3c stem;
stem.discoverAndConnect (USB) ;

// Check if we are sourcing power
uint8_t connectionState = 0;
stem.pd[TEST_PORT] .getConnectionState (&connectionState) ;

// Ensure we are sinking
if (connectionState == powerdeliveryPowerRoleSink) {
stem.rail [TEST_PORT] .setEnable (true);

// Do Stuff

int32_t voltage = 0;

int32_t current = 0;
stem.hub.port [TEST_PORT] .getVbusVoltage (&voltage) ;
stem.hub.port [TEST_PORT] .getVbusCurrent (¤t) ;
// Do Stuff

stem.rail [TEST_PORT] .setEnable (false);

stem.disconnect () ;
=

Python

56 Chapter 1. Devices

BrainStem Reference Manual, Release 2.11.1

TEST_PORT = 1;

stem = brainstem.stem.USBHub3c ()
stem.discoverAndConnect (brainstem.link.Spec.USB) ;

Check if we are sourcing power
connection_state_result = stem.pd[TEST_PORT] .getConnectionState () ;

Ensure we are sinking
if ((connection_state_result.value == _BS_C.powerdeliveryPowerRoleSink) :
stem.rail [TEST_PORT] .setEnable (true)

Do Stuff
voltage_result = stem.hub.port [TEST_PORT] .getVbusVoltage () ;
current_result = stem.hub.port [TEST_PORT] .getVbusCurrent () ;
Do Stuff

stem.rail [TEST_PORT] .setEnable (false)

stem.disconnect ()

Relevant API's

stem.rail[x].setEnable () [cpp] [python] [NET] [LabVIEW]
stem.rail[x] .getEnable () [cpp] [python] [NET] [LabVIEW]

PD Builder
The PD Builder feature allows the user to modify all Power Data Objects (PDO) presented by the USBHub3c.
This includes both sourcing and sinking PDOs of the USBHub3c.
Use Cases
+ Designing PDOs for you own device
» Exposing DUTs to PDOs
* Restricting DUTs from PDOs
Editable Items

PDO Types PDO Flags PDO Limits
Fixed Unchuncked message support Voltage
Variable Dual role data Current
Battery USB communications possiable Power
APDO External power

USB suspend

Dual role power
High capability
Fast role swap current

1.2. USBHub3c 57

BrainStem Reference Manual, Release 2.11.1

HubTool

HubTool allows the user to visually build a PDO without needing to know anything about the Power Delivery
specification. Once created you can immediately apply it to the USBHub3c.

Port: 1 & Power Type: | Local Source Rules

En | Rule | PDO Type | Min Voltage (mV) | Max Voltage (mV) | Power (mW) | Current (ma) | Raw | et Rule | Set Default |
3000 Set Reset

Fixed 9000 9000 3000 Set Reset

Variable 3300 21000 5000 Set Reset

Battery 3400 L 21000 100000 Set Reset

ADPO 3000 21000 Set Reset
Fixed Q 0 Set Reset

Fixed 0 0 Set Reset

Example

C++

static const int TEST_PORT = 1;
static const uint32_t MY_CUSTOM_SOURCE_PDO = 0x0001912C;
static const uint32_t MY _CUSTOM_SINK_PDO = 0x0002D12C;

aUSBHub3c stem;
stem.discoverAndConnect (USB) ;

//Change local SOURCE PDO 1 to MY_CUSTOM_SOURCE_PDO

stem.pd[TEST_PORT] .setPowerDataObject (powerdeliveryPowerRoleSource, 1, MY_CUSTOM_
+SOURCE_PDO)

//Change local SINK PDO 1 to MY _CUSTOM_SINK_PDO

stem.pd[TEST_PORT] .setPowerDataObject (powerdeliveryPowerRoleSink, 1, MY_CUSTOM_SINK__
<PDO)

//Do Stuff

stem.disconnect ()

Python

TEST PORT = 1;
MY_CUSTOM_SOURCE_PDO = 0x0001912C;
MY_CUSTOM_SINK_PDO = 0x0002D12C;

stem = brainstem.stem.USBHub3c ()
stem.discoverAndConnect (brainstem.link.Spec.USB)

(continues on next page)

58 Chapter 1. Devices

BrainStem Reference Manual, Release 2.11.1

(continued from previous page)

#Change local SOURCE PDO 1 to MY_CUSTOM_SOURCE_PDO
stem.pd[TEST_PORT] . setPowerDataObject (powerdeliveryPowerRoleSource, 1, MY_CUSTOM_
<SOURCE_PDO)

#Change local SINK PDO 1 to MY_CUSTOM_SINK_PDO
stem.pd[TEST_PORT] .setPowerDataObject (powerdeliveryPowerRoleSink, 1, MY_CUSTOM_SINK_
<PDO)

#Do Stuff

stem.disconnect ()

Relevant API's

stem.hub.pd[x].setPowerDataObject () [cpp] [python] [NET] [LabVIEW]
stem.hub.pd[x] .getPowerDataObject () [cpp] [python] [NET] [LabVIEW]

stem.hub.pd[x].setPowerDataObjectEnabled () [cpp] [python] [NET] [LabVIEW]
stem.hub.pd[x] .getPowerDataObjectEnabled () [cpp] [python] [NET] [LabVIEW]

PD Logging

The PD Logging feature allows you to monitor Power Delivery communication on all 8 ports of the USBHub3c.
Use Cases

» Capture Power Delivery (PD) events across all USB-C ports

» Decode PD messages

» Export PD message logs to CSV

« Filter USB-PD traffic by message type.

« Clearly show PD message direction.

» Send arbitrary Vendor Defined Messages (VDMs)

HubTool

With HubTool you can easily visualize the Power Delivery log.

1.2. USBHub3c 59

BrainStem Reference Manual, Release 2.11.1

System Information

SM: 0x4F7AOCTS Voltage: 20.0 VDC Hardware Offset:0

Model 24 Current: 0.5A Rautar: e
odet drrent - SW Offset:

Firmware: Temperature: 30C

Save
Module:

Summat Port 0 Control Power C 10 Expander Power PD Logging
ry

Start Stop

| Timestamp (S:us) | Port | Direction | Spec | SGP | Power Role | Data Role | ID | Packet Type | Msg Type | Raw
1 1429:635630 1 RX V2.0 SOP Source DFP 0 Data Source Capabilities 0x61 0x11 0x96 0x90 0x01 0x36
2 1429:645760 1 TX V2.0 SOP Sink UFP Data Request 0x42 0x10 0x64 0x90 0x01 0x10
3 1429:654670 RX V2.0 SOP Source DFP Control Accept 0x63 0x03
4 1429:680910 RX V2.0 SOP Source DFP Control PS Ready 0x66 0x05
5 1429:690560 RX V2.0 SOP Source DFP Data Vendor Defined 0x6F 0x17 0x01 0x80 0x00 OxFF
6 1429:701040 T V2.0 SOP Sink UFP Data Vendor Defined 0x4F 0x72 0x41 0x80 0x00 OxFF OXFF 0x24 OxA...
7 1429:707240 RX V2.0 SOP Source DFP Data Vendor Defined 0x6F 0x19 0x02 0x80 0x00 OxFF
8 1429:712110 TX V2.0 SOP Sink UFP Data Vendor Defined 0x4F 0x24 0x42 0x80 0x00 OxFF 0x00 0x00 OxF...
9 1428:717770 RX V2.0 SOP Source DFP Data Vendor Defined Ox6F 0x1B 0x02 0x80 [%00 OxFF
1429:724220 TX V2.0 SOP Sink UFP Data Vendor Defined 0x4F 0x26 0x42 0x80 0x00 OxFF 0x00 0x00 OxF...
1429:948940 T V2.0 SOP Sink UFP Control VConn Swap 0x4B 0x08
1429:957240 RX V2.0 SOP Source DFP Control Accept 0x63 0x0D
1430:18980 T V2.0 SOP Sink UFP Control PS Ready 0x46 Ox0A
1430:72450 T V2.0 S.. Sink UFP Data Vendor Defined 0x4F 0x10 0x01 0x80 0x00 OxFF
1430:158980 TX V2.0 S.. Sink UFP Data Vendor Defined 0x4F 0x12 0x01 0x80 0x00 OxFF
1430168330 RX V2.0 S.. Source UFP Data Vendor Defined 0x4F 0x53 0x41 0x80 0x00 0xFF 0x11 0x07 0x00...
1430:262130 T V2.0 Sink UFP Control DR Swap 0x49 0x0C
1430:269210 RX V2.0 Source DFP Control Accept 0x63 OxOF
1430:515440 T V2.0 Sink DFP Control PR Swap 0x6A Ox0E
1430:523230 RX V2.0 Source UFP Control Accept 0x43 0x01
1430:625040 RX V2.0 Sink UFP Control PS Ready 0x46 0x02
1430:741540 TX V2.0 Source DFP Control PS Ready 0x66 0x01
1430:903350 TX V2.0 Source DFP Data Source Capabilities 0x610x51 0x2C 0x91 0x01 0x3E 0x2C 0xD1 0x02...
1430:915290 RX V2.0 Sink UFP Data Request 0x42 0x10 0x2C OxB1 0x04 0x13
1430:919090 1 ™ V20 ¢ Sanires NFP Contral Arcant 0xR3 N3

Software Feature: Rail Enable: Enabled Device Type: | Serial Number:
Software Feature: QC Mode: Enabled USBHub3c 4F7A0C15
Software Feature: PDO Editing: Enabled USBHub3p AFB2130D
Software Feature: VBUS Validation: Enabled

Software Feature: PD Logging: Enabled

USBHub3c: Ox4F7A0CAS5, Error: 7 CMD: stem.hub.port[x].setVoltageSetpoint

@

ALY
X}

B

0
1
2
3
1
4
2
5
3
4
6
5
0
1
1
6
7
7
0
1
0
0
0
1

n
0

Relevant API's

stem.pd[x] .setUEIBytes () [cpp] [python]

Quick Charge™

The USBHub3c Quick Charge™ feature adds the ability to enable the Quick Charge™ port power mode on
one or more ports. This enables fast charging on devices that support Quick Charge™.

Version Voltage Current Power

QCH1 0-6.3V 2A 10W

Qc2 Class A: 5V, 9V, 12V 1.67A,2A,0or 3A 18W
Class B: 5V, 9V, 12V, 20V

QC3 3.6-22V in 200mV steps 2.6A or 4.6A 36W

QC4 3.6-20V in 20mV steps 2.6A or 4.6A 100W
5V, 9V (PD compatible) 3A (PD modes)

3-21V in 20mV steps (PD3 PPS mode)

HubTool - QC 2.0

60 Chapter 1. Devices

BrainStem Reference Manual, Release 2.11.1

Power Mode: QualCom Quick Charge

Port Info:
MA CC2 Active

Connection: Sourcing
VBUS:
Voltage Setpoint (V): 11.57

Current Limit [A): 3.20

11.533V

HubTool - QC 3.0

Power Mode: QualCom GQuick Charge
Port Info:
MNA CC2 Active

Connection: Sourcing
VBUS:
Voltage Setpoint (V): 19.25

Current Limit (&): 3.20

18.958V

This software feature can be exploited through the USBHub3c Port Entity

1.2. USBHub3c 61

BrainStem Reference Manual, Release 2.11.1

Example

C++

static const int TEST_PORT = 1;

aUSBHub3c stem;
stem.discoverAndConnect (USB) ;

//Configure the Power mode: Quick Charge™
stem.hub.port [TEST_PORT] .setPowerMode (portPowerMode_qgc_Value) ;

//Do Stuff

stem.disconnect ()

Python

TEST_PORT = 1;

stem = brainstem.stem.USBHub3c ()
stem.discoverAndConnect (brainstem.link.Spec.USB)

Configure the Power mode: Quick Charge™
stem.hub.port [TEST_PORT] . setPowerMode (_BS_C.portPowerMode_gc_Value) ;

#Do Stuff

stem.disconnect ()

Relevant API's

stem.hub.port [x].setPowerMode () [cpp] [python] [NET] [LabVIEW] stem.hub.port[x].
getPowerMode () [cpp] [python] [NET] [LabVIEW]

VBus Validation

The VBus Validation software feature gives the user full control of current limit and voltage setpoint for ports
0-5. This feature can be used in two different applications; Within the Power Delivery specification or as a fully
programmable power supply.

Use Cases
* Over voltage testing
» Under voltage testing

6 channel bench top power supply

Note: This feature has the ability to damage your device. Acroname is not responsible for any damage
incurred by using this feature.

This software feature can be exploited through the USBHub3c Port Entity

62 Chapter 1. Devices

BrainStem Reference Manual, Release 2.11.1

VBus Validation - Power Delivery Mode

Using the VBus Validation feature within the power delivery mode allows the user to test if their device responds
properly when a power source is behaving incorrectly or operating at the edge of specification.

It is important to remember that in this mode the USBHub3c ‘s power delivery engine also has access to
these controls and therefore it is important to allow the USBHub3c and the device to finish negotiations before
adjusting these values. Additionally, any PD events or errors can trigger re-negotiations which will replace any
values the user has set.

This mode should only be used when the Power Delivery connection state is sourcing.

1.2. USBHub3c 63

BrainStem Reference Manual, Release 2.11.1

« Port 1 Set Upstream

Port Control:
« Power
« Datai=1 & CCI= & Veconn =

Data Role: Downstream

My,

Power Mode: Power Delivery -

Port Info:
MA
Connection:

VBUS:
Voltage Setpoint (V): 5.20

CC2 Active
Sourcing

Current Limit [A): 3.20

Example

C++

static const int TEST_PORT = 1;

(continues on next page)

64 Chapter 1. Devices

BrainStem Reference Manual, Release 2.11.1

(continued from previous page)

aUSBHub3c stem;
stem.discoverAndConnect (USB) ;

//Configure the Power mode: Power Delivery (default)
stem.hub.port [TEST_PORT] .setPowerMode (portPowerMode_pd_Value) ;

//Check if we are sourcing power
uint8_t connectionState = 0;
stem.pd[TEST_PORT] .getConnectionState (&connectionState) ;

//Ensure we have an RDO from the remote.

//This ensures we have finished negotiating.

uint32_t rdo = 0;

stem.pd[TEST_PORT] .getRequestDataObject (powerdeliveryPartnerRemote, &rdo);

if ((connectionState == powerdeliveryPowerRoleSource) &&
(rdo > 0))

//Do Stuff

//Set desired port voltage and limit.

stem.hub.port [TEST_PORT] .setVoltageSetpoint (5500000) ; //5.5VDC
stem.hub.port [TEST_PORT] .setCurrentLimit (500000) ; //500mA
//Do Stuff

stem.disconnect ()
.

Python

-

TEST_PORT = 1;

stem = brainstem.stem.USBHub3c ()
stem.discoverAndConnect (brainstem.link.Spec.USB)

#Configure the Power mode: Power Delivery (default)
stem.hub.port [TEST_PORT] .setPowerMode (_BS_C.portPowerMode_pd_Value) ;

#Check if we are sourcing power
connection_state_result = stem.pd[TEST_PORT] .getConnectionState();

#Ensure we have an RDO from the remote.

#This ensures we have finished negotiating.

rdo_result = stem.pd[TEST_PORT] .getRequestDataObject (_BS_C.
spowerdeliveryPartnerRemote) ;

if ((connection_state_result.value == _BS_C.powerdeliveryPowerRoleSource) and
(rdo_result.value > 0)):

#Do Stuff

#Set desired port voltage and limit.

stem.hub.port [TEST_PORT] .setVoltageSetpoint (5500000) ; #5.5VDC
stem.hub.port [TEST_PORT] .setCurrentLimit (500000) ; #500mA
#Do Stuff

stem.disconnect ()
=

1.2. USBHub3c

65

BrainStem Reference Manual, Release 2.11.1

VBus Validation - Programmable Power Supply Mode

In this mode the USBHub3c is transformed into a 6 channel programmable power supply capable of supplying
100 Watts per channel.

Power Mode: Programmable Power Supply

Fort Info:

MNA Mot Attached
Connection: Mot Attached
VBUS:

Voltage Setpoint (Mf; 15.00
Current Limit (A): 0.80

Example
C++

s N

static const int TEST_PORT = 1;

aUSBHub3c stem;
stem.discoverAndConnect (USB) ;

//Disable port while we configure
stem.hub.port [TEST_PORT] .setEnable (false);

//Configure the Power mode: Programmable Power Supply
stem.hub.port [TEST_PORT] .setPowerMode (portPowerMode_ps_Value) ;

//Set desired port voltage and limit.
stem.hub.port [TEST_PORT] .setVoltageSetpoint (5500000) ; //5.5VDC
stem.hub.port [TEST_PORT] .setCurrentLimit (500000) ; //500mA

//enable the port when ready.
stem.hub.port [TEST_PORT] .setEnable (true);

//Do Stuff

//Return port to safe state.
stem.hub.port [TEST_PORT] .setEnable (false)

stem.disconnect ()
-

66 Chapter 1. Devices

BrainStem Reference Manual, Release 2.11.1

Python

-

TEST_PORT = 1;

stem = brainstem.stem.USBHub3c ()
stem.discoverAndConnect (brainstem.link.Spec.USB)

#Disable port while we configure
stem.hub.port [TEST_PORT] .setEnable (false)

//Configure the Power mode: Programmable Power Supply
stem.hub.port [TEST_PORT] . setPowerMode (_BS_C.portPowerMode_ps_Value) ;

#Set desired port voltage and limit.
stem.hub.port [TEST_PORT] .setVoltageSetpoint (5500000) #5.5VDC
stem.hub.port [TEST_PORT] .setCurrentLimit (500000) #500mA

#Enable the port when ready.
stem.hub.port [TEST_PORT] .setEnable (true)

#Do Stuff

#Return port to safe state.
stem.hub.port [TEST_PORT] .setEnable (false)

stem.disconnect ()
=

Relevant API's

stem.hub.port [x] .setVoltageSetpoint () [cpp] [python] [NET] [LabVIEW] stem.hub.
port [x] .getVoltageSetpoint () [cpp] [python] [NET] [LabVIEW]

stem.hub.port [x] .setCurrentLimit () [cpp] [python] [NET] [LabVIEW] stem.hub.
port[x].getCurrentlLimit () [cpp] [python] [NET] [LabVIEW]

stem.hub.port [x].setPowerMode () [cpp] [python] [NET] [LabVIEW] stem.hub.port[x].
getPowerMode () [cpp] [python] [NET] [LabVIEW]

stem.hub.pd[x].setRequestDataObject () [cpp] [python] [NET] [LabVIEW] stem.hub.
pd[x].getRequestDataObject () [cpp] [python] [NET] [LabVIEW]

stem.hub.pd[x].setConnectionState () [cppl] I[python] [NET] [LabVIEW] stem.hub.
pd[x].getConnectionState () [cpp] [python] [NET] [LabVIEW]

RS232 Serial Communication

The RS232 Serial Communication feature allows one to send commands to affect control and functionality of
the USBHub3c.

Use Cases

Affecting USBHub3c control.
Audio/Video applications.

1.2. USBHub3c 67

BrainStem Reference Manual, Release 2.11.1

Configuration

The default configuration of the RS232 Serial Communication feature is:

8 Data bits

No Parity

No Flow Control
1 Stop bit

9600 Baudrate

This feature does have some configurability through the USBHub3c UART Entity

Extron Compatible Serial Commands

The RS232 Serial Communication feature is capable of changing the USBHub3c upstream port, requesting
the current status of the upstream/downstream connections, enable/disable of ports, and the USBHub3c part
number/firmware version queries. This can be accomplished with a protocol that is compatible with Extron’s
Simple Instruction Set over RS232.

Commands

The following is a list of all commands the USBHub3c supports with their arguments, descriptions, and ex-
pected responses.

68 Chapter 1. Devices

BrainStem Reference Manual, Release 2.11.1

Cmd Arguments Description Expected Responses
! None Get current upstream Chn #\r\n
port index
#! # Port Change upstreamportto Chn #\r\n
port number
#" # Port Change upstreamportto Chn #\r\n
port number
I None Get connection status Chn # InACTS$S$$SSS
OutACTS$$$$$5\r\n
N None Get part number
S99-USBHUB-3C-PRO\
r\n
S99-USBHUB-3C-LAB\
r\n
Q None Get firmware version <M>.<m>.<p>\r\n
#P # Port Get enable/disable sta-
f
tus of # port number port #*0\r\n
Port #*1\r\n
#*$Pp Set $ enable/disableof # Port #*S\r\n
port number
Port
$ Enable 0/1

Error Codes

The following is a list of all error codes the USBHub3c supports with descriptions.

Code Description

EO1 invalid port number, check the port number and make sure it’s valid.

E10 invalid command, verify that you formatted the command correctly.

E13 invalid value, verify that the value is within the acceptable range for this command.
E14 invalid configuration, verify the system is in a state it can accept this command.

1.2. USBHub3c

69

BrainStem Reference Manual, Release 2.11.1

General Notes
All commands are ASCII strings.

\r is the ASCII character for carriage return.
\n is the ASCII character for new line.

Examples

Extron Compatible Serial Commands:

Upstream Change

Change Upstream to Port 1

Tx: 1!
Rx: chn 1\r\n

Port Status

Get Port status with Upstream set to port 1, an upstream device on port 1 and Downstream device on port 2

Tx: 1
Rx: chn 1 InACT010000 OutACT001000\r\n

Port Disable

Disable Port 3

Tx: 3*0P
Rx: Port 3*0\r\n

API Configurations:
C++

static const int TEST_SERIAL = 0;

aUSBHub3c stem;
stem.discoverAndConnect (USB) ;

// Enable the port
stem.uart [TEST_SERIAL].setEnable (true);

// Change baudrate to 115200 from default 9600
stem.uart [TEST_SERIAL] .setBaudRate (115200) ;

(continues on next page)

70

Chapter 1. Devices

BrainStem Reference Manual, Release 2.11.1

// Change Protocol to Extron Compatible
// 0 — Disabled/Undefined

// 1 — Extron Compatible

stem.uart [TEST_SERIAL].setProtocol (1)

// Perform a system save so the changes persist
// through power cycles
stem.system.save () ;

stem.disconnect () ;
=

(continued from previous page)

Python

~

TEST_SERIAL = 0

stem = brainstem.stem.USBHub3c ()
stem.discoverAndConnect (brainstem.link.Spec.USB)

Enable the port
stem.uart [TEST_SERIAL] .setEnable (1)

Change baudrate to 115200 from default 9600
stem.uart [TEST_SERIAL] .setBaudRate (115200)

Change Protocol to Extron Compatible
0 — Disabled/Undefined

1 - Extron Compatible

stem.uart [TEST_SERIAL] .setProtocol (1)

Perform a system save so the changes persist
through power cycles
stem.system.save ()

stem.disconnect ()
-

Relevant API's
stem.uart .setEnable () [cpp] [python] [NET] [LabVIEW]
stem.uart .getEnable () [cpp] [python] [NET] [LabVIEW]
stem.uart

[x]

[x]

[x]
stem.uart [x] .getBaudRate

[x]

[x]

() [cpp] [python] [NET] [LabVIEW]
stem.uart .setProtocol () [cpp] [python] [NET] [LabVIEW]
stem.uart .getProtocol () [cpp] [python] [NET] [LabVIEW]

.setBaudRate () [cpp] [python] [NET] [LabVIEW]

1.2. USBHub3c

71

BrainStem Reference Manual, Release 2.11.1

1.3 USBHub2x4

The USBHub2x4 gives engineers advanced flexibility and configurability over USB ports in testing and devel-
opment applications. It can be used to enable/disable individual USB ports, measure current or voltage on
downstream USB ports, set programmable current limits, set USB charging protocol behavior and otherwise
automate USB port behaviors in development and testing.

To get up to speed with the USBHub2x4 and quickly learn about its functionality follow the quick start guide.
Have a look at the basic example or dive into the Programming interface of the USBHub2x4 for a more in depth
view.

1.3.1 Quick Start Guide
1. Download The Development Kit

+ Download the BrainStem Development Kit (BDK)® for your particular operating system and architecture.
+ Download HubTool” for your particular operating system and architecture.

6 https:/acroname.com/api
7 https://acroname.com/hubtool

72 Chapter 1. Devices

https://acroname.com/api
https://acroname.com/hubtool

BrainStem Reference Manual, Release 2.11.1

2. Connect Power
» Using the provided universal power supply connect the barrel jack into the hub.
» Connect the other end into a 120/240V AC outlet.

3. Connect Data

» With the provided USB 3.0 A-MiniB cable connect the A side to your host computer and the MiniB side
to the connection labeled “Up0”.

4. Run System

* Open HubTool
» On the bottom right side of the application select the USBHub2x4 device.

Note: Linux users will need run the script labeled “udev.sh” located in the “BrainStem_linux_Driverless” folder
before they will be able communicate with a BrainStem device.

Congratulations! You are now ready to start exploring the capabilities of the USBHub2x4. For more information
please take a look at our Getting Started Guide

1.3.2 Basic Example

C++

#include <iostream>
#include "BrainStem2/BrainStem-all.h"

int main(int argc, const char * argv[]) {

//Create an instance of a USBHub2x4 module.
aUSBHub2x4 hub;

//Connect to the hardware.

err = hub.discoverAndConnect (USB) ;

if (err !'= aErrNone) {
printf ("Error %d encountered connecting to BrainStem module\n", err);
return 1;

} else { printf ("Connected to BrainStem module.\n"); }

//Basic initialization
hub.usb.setPortDisable
hub.usb.setPortDisable
hub.usb.setPortDisable
hub.usb.setPortDisable

Get everything turned off).
)i

)i
)i
)

S0
//Do Stuff: other test initialization
SIS

(continues on next page)

1.3. USBHub2x4 73

BrainStem Reference Manual, Release 2.11.1

L

(continued from previous page)

//Ready for testing
//Enable Port (s)
hub.usb.setPortEnable (0) ;
hub.usb.setPortDisable (1) ;
hub.usb.setPortDisable (2);
hub.usb.setPortDisable (3)

’

SIS
//Do Stuff on Port 0
SIS

hub.usb.setPortDisable (0) ;
hub.usb.setPortEnable (1) ;
hub.usb.setPortDisable (2);
hub.usb.setPortDisable (3);

SIS
//Do Stuff on Port 1
0SS

hub.usb.setPortDisable (0) ;
hub.usb.setPortDisable (1) ;
hub.usb.setPortEnable (2) ;
hub.usb.setPortDisable (3);

SIS
//Do Stuff on Port 2
SIS S

hub.usb.setPortDisable (0) ;
hub.usb.setPortDisable (1) ;
hub.usb.setPortEnable (2) ;
hub.usb.setPortDisable (3);

SIS
//Do Stuff on Port 3
SIS S

//Finished with testing.
//De—initialize.

hub.usb.setPortDisable
hub.usb.setPortDisable
hub.usb.setPortDisable
hub.usb.setPortDisable

’

’

(0)
(1)
(2)
(3)i

’

//Disconnect
hub.disconnect () ;

}

Python

-

import brainstem
#for easy access to error constants
from brainstem.result import Result
import time
import sys
(continues on next page)

74 Chapter 1. Devices

BrainStem Reference Manual, Release 2.11.1

(continued from previous page)

Create an instance of a USBHub2x4 module.
hub = brainstem.stem.USBHub2x4 ()

Locate and connect to the first object you find on USB
result = hub.discoverAndConnect (brainstem.link.Spec.USB)

if result != Result.NO_ERROR:

print ("Error %d encountered connecting to BrainStem Module.\n" $ result)
else:

print ("Connected to BrainStem module.\n")

#Basic initialization (Get everything turned off).

hub.usb.setPortDisable (0)

hub.usb.setPortDisable (1)

hub.usb.setPortDisable (2)
(

hub.usb.setPortDisable (3)

#AH AR HAAHAS

##Do Stuff other test initialization
#AAH AR HAAEA

##Ready for testing
##Enable Port (s)
hub.usb.setPortEnable (0)
hub.usb.setPortDisable (1)
hub.usb.setPortDisable (2)
hub.usb.setPortDisable (3)

#HEHAFAAAAHFAS
##Do Stuff on Port 0
#HARFHFAAAHFAH

hub.usb.setPortDisable (0)
hub.usb.setPortEnable (1)

hub.usb.setPortDisable (2)
hub.usb.setPortDisable (3)

#HEHAFAAAAFAH
##Do Stuff on Port 1
#HEHAFHFAAAHAS

hub.usb.setPortDisable (0
hub.usb.setPortDisable (1
hub.usb.setPortEnable (2)
hub.usb.setPortDisable (3)

)
)

#AAHAAEHAAAA
##Do Stuff on Port 2
#HAHAAAHAAAA

hub.usb.setPortDisable (0)
hub.usb.setPortDisable (1)
hub.usb.setPortDisable (2)
hub.usb.setPortEnable (3)

tA#HAAFHAAFH

(continues on next page)

1.3. USBHub2x4 75

BrainStem Reference Manual, Release 2.11.1

##Do Stuff on Port 3
#HAAHAAAHAAEA

##Finished with testing.
##De—initialize.

hub.usb.setPortDisable (0)
hub.usb.setPortDisable (1)
hub.usb.setPortDisable (2)
hub.usb.setPortDisable (3)

Disconnect from device.
hub.disconnect () ;
print ("Disconnected from BrainStem module.

\n")

(continued from previous page)

1.3.3 Indicators and Connections

LEDs and Connections

Dovwnstreearn Boost
Power

Upstream Boost
Heortbeat
Watchdog

BrainStem Link

User LED

USE Channel O Status
USE Channel O Power
USE Channel 1 Status
USE Channel | Power
USE Channel 2 Status
USE Channel 2 Power
USE Channel 3 Status
USE Channel 3 Power
Hub Status

USE Upstrear Channel O
USE Upstream Channel 1

DETAIL A
SCALE4:1

76

Chapter 1. Devices

BrainStem Reference Manual, Release 2.11.1

LED Name Color Description

Downstream Boost Yellow Indicated the Downstream Data Boost is enabled through the
USB Entity API

Power Red Shows that a 3.3V voltage regulation system is up and running
properly.

Upstream Boost Yellow Indicated the Upstream Data Boost is enabled through the USB
Entity API

Heartbeat Green Communication is occurring with the BrainStem module

Watchdog Blue Indication the internal watchdog is running and the connection
with the Host is healthy

BrainStem Link Yellow The BrainStem USB interface is created on a host computer

User LED Blue A software controllable indicator accessed via the System
BrainStem Entity. See the System Entity API Reference Page.

USB Channel 0:3 Green Indicates whether the downstream device has enumerated on

Status the host computer

USB Channel 0:3 Red Indicates an error on USB power (Vbus) such as overcurrent

Power

Hub Status Red The USB hub communicates with a host computer.

USB Upstream Yellow Indicated Upstream 0 has been selected

Channel 0

USB Upstream Yellow Indicated Upstream 1 has been selected

Channel 1

1.3.4 Programming Interface

The USBHub2x4 is capable of many features. These features are organized into groups called entities.
Through these entities we can access the vast features of the USBHub2x4.

A complete list of all entities and functions can be found in the Module Entities page.

Software Control

Software control of the features of the USBHub2x4 is done with the BrainStem API via a BrainStem link. Brain-
Stem links are done over USB and can be established via upstream port 0 (Up0) and upstream port 1 (Up1).
After one or more of these ports is connected to a host machine, a user can connect to it via software API:

[stem.link.discoverAndConnect(USB)]

When multiple Acroname devices are connected to a host, connecting to a specific hub can be done by pro-
viding the hub serial number. Further, all connected devices can be found using

Acroname: :BrainStem: :Link: :sDiscover () (C++)

brainstem.discover.findAllModules (USB) (Python)

1.3. USBHub2x4 77

BrainStem Reference Manual, Release 2.11.1

Using Multiple Hosts with USBHub2x4

The two upstream-facing host ports can be connected to two different host computers. Due to limitations of USB
specification, only one host computer can access downstream USB ports at any time. Through the BrainStem
API, the upstream port used can be controlled, or the system can automatically select the upstream port (see
USB Hub Upstream Mode). When automatically selecting the upstream port, the USBHub2x4 will default to
using Up0 if it is connected.

Device Drivers
The USBHub2x4 leverages operating system user space interfaces that do not require custom drivers for
operation on modern operating systems.

Some older operating systems may require the installation of a BrainStem USB driver to enable software con-
trol. Installation details on installing USB drivers can be found within the BrainStem Development Kit under
the “drivers” folder. For example, Windows 7 requires the supplied INF to communicate with BrainStem USB
devices.

1.3.5 USBHub2x4 Module Entities

System

API Documentation: [cpp] [python] [.NET] [LabVIEW]

Every BrainStem module includes a single system entity. The system entity allows the retrieval and manipula-
tion of configuration settings like the module address and input voltage, control over the user LED, as well as
other functionality.

Serial Number

Every USBHub2x4 is assigned a unique serial number at the factory. This facilitates an arbitrary number of
USBHub2x4 devices attached to a host computer. The following method call can retrieve the unique serial
number for each device.

stem.system.getSerialNumber (serialNumber) [cpp] [python] [NET] [LabVIEN]

Module Default Base Address

BrainStems are designed to be able to form a reactive, extensible network. All BrainStem modules come with
a default network base address for identification on the BrainStem network bus. The default module base
address for USBHub2x4 is factory-set as 6, and can be accessed with.

stem.system.getModule (module) [cpp] [python] [NET] [LabVIEW]

78 Chapter 1. Devices

BrainStem Reference Manual, Release 2.11.1

Saved Settings

Some entities can be configured and saved to non-volatile memory. This allows a user to modify the startup
and operational behavior for the USBHub2x4 away from the factory default settings. Saving system settings
preserves the settings as the new default. Most changes to system settings require a save and reboot before
taking effect. For example, upstream and downstream USB Boost settings will not take effect unless a system
save operation is completed, followed by a reset or power cycle. Use the following command to save changes
to system settings before reboot:

stem.system.save () [cpp] [python] [NET] [LabVIEW]

Pressing the reset button two times within 5 seconds will return all settings to factory defaults: all ports’ data
and power enabled, CDP mode, enumeration delay of 0, 2500mA current limit.

Savable ltems

Software Offset 12C Rate

Router Address Port Enumeration Delay
Boot Slot Downstream Boost

Port Mode (SDP, CDP) - each port Current Limit - per port
Upstream Boost Port state (data and power)

Temperature

API Documentation: [cpp] [python] [.NET] [LabVIEW]

Certain modules have a temperature measurement available. The temperature entity gives access to these
measurements. Check your module datasheet to see if your module has a temperature entity.

System Temperature

The temperature of the USBHub2x4 can be measured with:

stem.temperature[0] .getTemperature (uC) [cpp]l [python] [NET] [LabVIEW]

where temperature is in micro-degress Celcius.

1.3. USBHub2x4 79

BrainStem Reference Manual, Release 2.11.1

usB

API Documentation: [cpp] [python] [[NET] [LabVIEW]

The USB Entity provides the software control interface for USB related features. This entity is supported by
BrainStem products which have programmatically controlled USB features.

Downstream Channel Control

Downstream USB channels can be manipulated through the usb entity command to enable and disable USB
data and Vbus lines, measure current, measure Vbus voltage, boost data line signals, and measure tempera-
ture.

Manipulating Hi-Speed data and Vbus lines simultaneously for a single port can be done by calling the following
methods with channel in [0-3] being the port index:

stem.usb.setPortEnable (channel) [cpp] [python] [NET] [LabVIEW]
stem.usb.setPortDisable (channel) [cpp] [python] [NET] [LabVIEW]

Manipulating Hi-Speed data while not affecting the Vbus lines simultaneously for a single port can be done by
calling the following methods with channel [0-3]. The folloing methods provide equivalent functionality; the two
methods are offered for compatability with other products.

stem.usb.setDataEnable (channel) [cpp] [python] [NET] [LabVIEW]
stem.usb.setDataDisable (channel) [cpp] [python] [NET] [LabVIEW]
stem.usb.setHiSpeedDataEnable (channel [cpp] [python] [NET] [LabVIEW]
stem.usb.setHiSpeedDataDisable (channel) [cpp] [python] [NET] [LabVIEW]

Manipulating just the USB Vbus line for a single port can be done by calling the following method with channel
[0-3]:

stem.usb.setPowerkEnable (channel) [cpp] [python] [NET] [LabVIEW]
stem.usb.setPowerDisable (channel) [cpp] [python] [NET] [LabVIEW]
To affect multiple ports and lines simultaneously, see usb.setHubMode() later in this section.

Note that transitions between power and data enables states where power is enabled and only data is chang-
ing, require the USBHub2x4 to toggle Vbus power. This apprears as a port cycle event and the USBHub2x4
hardware will cycle Vbus even if the Vbus/Power setting is enabled.

Downstream Measurements

The USB Vbus voltage, as well as the current consumed on Vbus, can be read for each channel by calling the
following methods with channel [0-3], where the second variable passed into the method is the location for the
measurement result:

stem.usb.getPortVoltage (channel, pV) [cpp] [python] [NET] [LabVIEW]

stem.usb.getPortCurrent (channel, pA) [cpp] [python] [NET] [LabVIEW]

80 Chapter 1. Devices

BrainStem Reference Manual, Release 2.11.1

Downstream Current Limiting

Current-limit trip point settings can be accessed for each port by calling the following methods with channel
[0-3], where the second variable passed into the method is either the set value or the write location of the
result:

stem.usb.getPortCurrentlLimit (channel, pA) [cpp] [python] [NET] [LabVIEW]
stem.usb.setPortCurrentlLimit (channel, pA) [cpp] [python] [NET] [LabVIEN]

The current-limiting behavior follows the USB BC1.2 specification which allows for many different behaviors.
The USBHub2x4 has two stages of current-limiting. When a downstream device consumes current higher than
the programmed current limit, the hub will enter a “constant current” mode and is indicated in the getPortState()
bitfield with the constant current bit. In the constant current mode, the Vbus voltage will be reduced to attempt
maintain a constant current at the set current limit. The time and amount of voltage reduction and maximum
allowed current draw depends on the current limit set point.

As the Vbus voltage is reduced, if the device continues to increase its current draw (reduce it’s effective resis-
tance), the USBHub2x4 will “trip off” by disabling the Vbus and high-speed data lines. This state is indicated
with the error bit in the getPortState() bitfield. The Channel X Power error LED will also illuminate when this
error occurs. See the LED Indicators.

Downstream Enumeration Speed

The enumeration state and speed of each downstream port can be read with

stem.usb.getDownstreamDataSpeed [cpp] [python] [NET] [LabVIEW]

Value Hub Downstream Speed Descriptions

0 No device enumerated
1 Hi-Speed device enumerated

Downstream Operational Mode

The USB port operational mode controls the behavior of each downstream port’s charging behavior. Each
port can be setup to support different modes in the USB Battery Charge Specification 1.2 (BC1.2). Standard
Downstream Port (SDP) mode will cause BC1.2 compliant or older USB devices to consume 500mA or less.
Configuring a port as a Charging Downstream Port (CDP) will cause the hub signal to downstream devices that
devices may consume up to 5A, the maximum allowed by BC1.2. If there is no upstream USB host connected
to the hub, downstream ports set to CDP will behave as Dedicated Charging Ports (DCP).

The actual current consumed by the device is controlled by the downstream device and not the USBHub2x4.
Devices which are not compliant with BC1.2 or the previous USB power specifications may draw more current
than specified above.

The operational mode is set or read by calling the methods:
stem.usb.getPortMode (mode) [cpp] [python] [NET] [LabVIEW]

stem.usb.setPortMode (mode) [cpp] [python] [NET] [LabVIEW]

1.3. USBHub2x4 81

BrainStem Reference Manual, Release 2.11.1

Value Hub Port Mode Descriptions

0 Standard downstream port (SDP)
1 Charging downstream port (CDP)

Note: A system.save() and system.reset() is required before the new setting will take affect.

Downstream Enumeration Delay

Once a USB device is detected by the USBHub2x4 it is possible to delay its connection to an upstream host
computer and subsequent enumeration on the USB bus. The enumeration delay can mitigate or eliminate
host kernel instabilities by forcing devices to enumerate in slow succession, allowing a focus on validation of
drivers and software. The enumeration delay is configured in milliseconds, representing the time delay between
enabling each successive downstream port from 0 to 3. Enumeration delay is applied when the hub powers on
or when a new upstream connection is made.

stem.usb.setEnumerationDelay (delay) [cpp] [python] [NET] [LabVIEW]

stem.usb.getEnumberationDelay (delay) [cpp] [python] [NET] [LabVIEW]

Hub Operational Mode

In addition to targeting individual downstream USB ports, a bit-mapped hub mode interface is also available.
This interface allows the reading or setting of all USB downstream ports in one functional call.

Auto Vbus Toggle

By default the USBHub2x4 will toggle its downstream ports anytime the host connection is lost, changed or dis-
connected. Disabling (setting the bit) will cause the hub to not cycle downstream power on upstream changes.
This behavior can be helpful for certain host controllers and devices. Enumeration delay will override this set-
ting.

stem.usb.getHubMode (mode) [cpp] [python] [NET] [LabVIEW]
stem.usb.setHubMode (mode) [cpp] [python] [NET] [LabVIEW]

This command returns a 32-bit value which indicates:

Bit Hub Operational Mode Bitwise Description

USB Channel 0 USB Hi-Speed Data Enabled
USB Channel 0 USB Vbus Enabled
USB Channel 1 USB Hi-Speed Data Enabled
USB Channel 1 USB Vbus Enabled
USB Channel 2 USB Hi-Speed Data Enabled
USB Channel 2 USB Vbus Enabled
USB Channel 3 USB Hi-Speed Data Enabled
USB Channel 3 USB Vbus Enabled
:31 Reserved

ONOO O~ WN 2O

82 Chapter 1. Devices

BrainStem Reference Manual, Release 2.11.1

Hub Upstream Channels

The USBHub2x4 is perfect for environments where multiple devices need to be shared or switched between
two host computers using two host (upstream) connections via USB standard-B connectors. The upstream
connection can be automatically detected or specifically selected using the following methods:

stem.usb.getUpstreamMode (mode) [cpp] [python] [NET] [LabVIEW]
stem.usb.setUpstreamMode (mode) [cpp] [python] [NET] [LabVIEW]

The mode parameter can be defined as the following:

Value Hub Upstream Mode Descriptions

0 Force upstream port 0 to be selected
1 Force upstream port 1 to be selected
2 Automatically detect upstream port

Predefined C++ macros for these can be found in aProtocoldef.h, and Python’s built-in help interface.

The default operational mode is to auto detect which upstream USB port is selected. Automatic detection uses
the presence of Vbus on the USB type-B upstream connector to determine presence of a host. If only one
upstream port is connected to a host, it will be used for upstream USB. If both upstream ports are connected,
the hub will use upstream port 0.

If the Hub Upstream Mode is set to disconnect both upstream ports (or the only active upstream port), the only
path available to establish a BrainStem link to the USBHub2x4 will be via a host connected to the BrainStem
Control Port.

Hub Upstream State

The USBHub2x4 can provide status information on which upstream port is actively selected as data path to
the downstream ports:

stem.usb.getUpstreamState (mode) [cpp] [python] [NET] [LabVIEW]

Value Hub Upstream State Descriptions

0 Upstream port 0 is actively selected
1 Upstream port 1 is actively selected
2 No upstream port is selected

Port State

Each downstream port reports information regarding its operating state represented in bit-packed results from:
stem.usb.getPortState(state) [cpp] [python] [NET] [LabVIEW]

where channel can be [0-3], and the value status is 32-bit word, defined as the following:

1.3. USBHub2x4 83

BrainStem Reference Manual, Release 2.11.1

Bit Port State: Result Bitwise Description

0 USB Vbus Enabled

1 USB2 Data Enabled
2:18 Reserved

19 USB Error Flag

20 USB2 Boost Enabled
21:22 Reserved

23 Device Attached

24 Constant Current Mode
25:31 Reserved

Port Error Status Mapping

Error states for all downstream ports are bit-packed in 32-bit words available from:
stem.usb.getPortError (channel) [cpp] [python] [NET] [LabVIEW]

where channel is [0-3].

Errors can be cleared on each individual channel by calling the following method:
stem.usb.clearPortErrorStatus (channel) [cpp] [python] [NET] [LabVIEW]

Calling this command clears the port-related error bit flags in the port error state. Global bits for hub errors
cannot be cleared by this command.

Details about the port error status 32-bit word are as follows:

Bit Port Error Status Bitwise Description

0 USB port current limit exceeded

1 USB port back-drive condition detected
2 Reserved

3 Hub over temperature condition

4

5

VBus Discharge error
:31 Reserved

Boost Mode

Boost mode increases the drive strength of the USB 2.0 Hi- Speed data signals (power signals are not
changed). Boosting the data signal drive strength may help to overcome connectivity issues when using long
cables or connecting through relays, “pogo” pins or other adverse conditions. This setting is applied after a
system.save() call and reset or power cycle of the hub. The system setting is persistent until changed or the
hub is hard reset. After a hard reset, the default value of 0% boost is restored. A hard reset is done by pressing
the “Reset” button on the back of the hub while the hub is powered.

Boost mode can be applied to both the upstream and downstream USB ports with the follow methods:
stem.usb.getDownstreamBoostMode (setting) [cpp] [python] [NET] [LabVIEW]
stem.usb.setDownstreamBoostMode (setting) [cpp] [python] [NET] [LabVIEW]

stem.usb.getUpstreamBoostMode (setting) [cpp] [python] [NET] [LabVIEW]

84 Chapter 1. Devices

BrainStem Reference Manual, Release 2.11.1

stem.usb.setUpstreamBoostMode (setting) [cpp] [python] [NET] [LabVIEW]

The setting parameter is an integer that correlates to the following:

Value Hub Boost Mode Descriptions

0 Normal drive strength

1 4% increase in drive strength
2 8% increase in drive strength
3 12% increase in drive strength

Port

API Documentation: [cpp] [python] [.NET] [LabVIEW]

The Port Entity provides control over the most basic items related to a USB Port. This includes actions ranging
from a complete port enable and disable to the individual interface control. Voltage and current measurements
are also included for devices which support the Port Entity.

Port Control

The USBHub2x4 has a Port Entity for every port on the device; however, not all ports have the same capabilities.
These ports can be referenced by their instance (port[x]) index.

Port Label Index (port[x])

0 0
1 1
2 2
3 3
4
5

UpO
Up1

One of the most powerful features of the USBHub2x4 is its ability to turn ports on and off which is available on
Ports 0-3.

stem.hub.port [x].setEnabled () [cpp] [python] [NET] [LabVIEW]
stem.hub.port [x] .getEnabled () [cpp] [python] [NET] [LabVIEW]

Manipulating just the USB Vbus line for a single port can be done by calling the following method on Ports 0-3.

stem.hub.port [x].setPowerEnabled () [cpp] [python] [NET] [LabVIEW]
stem.hub.port [x] .getPowerEnabled () [cpp] [python] [NET] [LabVIEW]

1.3. USBHub2x4 85

BrainStem Reference Manual, Release 2.11.1

Manipulating data lines while not affecting the Vbus lines simultaneously for a single port can be done by calling
the following method for Ports 0-3. (For USBHub2x4 the only data lines happen to be USB 2.0 Hi-Speed)

stem.hub.port [x].setDataEnabled () [cpp] [python] [NET] [LabVIEW]
stem.hub.port [x] .getDataknabled () [cpp] [python] [NET] [LabVIEW]

Manipulating just the USB 2.0 Hi-Speed data lines for a single port can be done by calling the following for
Ports 0-3.

stem.hub.port [x].setDatalHSEnabled () [cpp] [python] [NET] [LabVIEW]
stem.hub.port [x] .getDatalHSEnabled () [cpp] [python] [NET] [LabVIEW]

Voltage and Current Measurements

The USBHub2x4 provides Voltage and Current measurements for Vbus. These values can be acquired for all
4 ports through the following APls

stem.hub.port [x].getVbusVoltage () [cpp] [python] [NET] [LabVIEW]
stem.hub.port [x] .getVbusCurrent () [cpp] [python] [NET] [LabVIEW]

Power Modes

The ports of the USBHub2x4 are capable of providing power in multiple formats. The default is Charging
Downstream Port (CDP), but that can be changed to things like: Standard Downstream Port (SDP), Charging
Downstream Port (CDP) / Dedicated Charging Port (DCP). These modes can be set through:

stem.hub.port [x].setPowerMode () [cpp] [python] [NET] [LabVIEW]
stem.hub.port [x] .getPowerMode () [cpp] [python] [NET] [LabVIEW]

Power Mode Value Define

None 0 portPowerMode_none_Value
SDP 1 portPowerMode_sdp_Value
CDP/DCP 2 portPowerMode_cdp_dcp_Value

Warning: The USBHub2x4 does not have a dedicated control port, therefore all control is done through
the upstream. If you change upstreams while controlling it, the control connection will be lost and the new
host will have to take over.

86 Chapter 1. Devices

BrainStem Reference Manual, Release 2.11.1

Port Mode

As outlined in the “Port Control” section the USBHub2x4 can individually manipulate almost every pin on the
connector; however, depending on your application that might require multiple function calls in order to config-
ure the port how you want it. Port Mode on the other hand is a one stop shop that allows you to pick and choose
which lines you want enabled or disabled through a single call. Additionally, it has a few other features tucked
away inside of it.

stem.hub.port [x].setMode () [cpp] [python] [NET] [LabVIEW]
stem.hub.port[x] .getMode () [cpp] [python] [NET] [LabVIEW]

Port Mode ltem Bit Value Define
Power Enable 0 0/1 portPortMode_powerEnabled_Bit
HS 1 Enable 1 01 portPortMode_HS1Enabled_Bit
Power Mode: Offset 16 portPortMode_portPowerMode_Offset
Power Mode: Mask 0x7 portPortMode_portPowerMode_Mask
Power Mode: None 16-18 0 portPortMode_portPowerMode_none_Value
Power Mode: SDP 16-18 1 portPortMode_portPowerMode_sdp_Value
Power Mode: CDP/DCP 16-18 2 portPortMode_cdp_dcp_Value

Data Role

The data role describes the current configuration of the port in regards to its data direction. In most cases this
evaluates to an Upstream Facing Port (UFP) or a Downstream Facing Port (DFP). Upstream in this case means
the host side of the port and Downstream refers to the device side. The Data Role can be aquired through:

stem.hub.port [x] .getDataRole () [cpp] [python] [NET] [LabVIEW]

Data Role Value Define

Disabled 0 portDataRole_Disabled Value
Upstream 1 portDataRole_Upstream_Value
Downstream 2 portDataRole_Downstream_Value
Control 3 portDataRole_Control_Value

1.3. USBHub2x4 87

BrainStem Reference Manual, Release 2.11.1

Port Limits and Modes

At the Port level the user has the ability to define current limit.

stem.hub.port [x].setCurrentLimit () [cpp] [python] [NET] [LabVIEW]
stem.hub.port [x] .getCurrentLimit () [cpp] [python] [NET] [LabVIEW]

Downstream Data Speed

The USBHub2x4 can detect if a device has been enumerated. Additionally, it can detect at what speed a
device has enumerated at.

stem.hub.port [x] .getDataSpeed () [cpp] [python] [NET] [LabVIEW]

Data Speed Bit Value Define

1.5 Mbit/s 0 0/1 portDataSpeed_Is_1p5M_Bit

12 Mbit/s 1 0/1 portDataSpeed_fs_12M_Bit

480 Mbit/s 2 0/1 portDataSpeed_hs_480M_Bit

5 Gbit/s 3 0/1 portDataSpeed_ss_5G_Bit

10 Gbit/s 4 0/1 portDataSpeed_ss_10G_Bit

USB 2.0 6 0/1 portDataSpeed_Connected 2p0_Bit
USB 3.0 7 0/1 portDataSpeed_Connected 3p0_Bit

USB System

API Documentation: [cpp] [python] [.NET] [LabVIEW]

The USBSystem class provides high level control of the lower level Port Entity

Upstream Control

The USBHub2x4 has the ability to designate one of the upstream ports (4-5) as the upstream connection. This
is very useful for moving devices between hosts.

stem.hub.setUpstream() [cpp] [python] [NET] [LabVIEW]
stem.hub.getUpstream() [cpp] [python] [NET] [LabVIEW]

Note: The Power Modes can only be changed when the port power is disabled.

88 Chapter 1. Devices

BrainStem Reference Manual, Release 2.11.1

Enumeration Delay

Once a USB device is detected by the USBHub2x4 it is possible to delay its connection to an upstream host
computer and subsequent enumeration on the USB bus. The enumeration delay can mitigate or eliminate
host kernel instabilities by forcing devices to enumerate in slow succession, allowing a focus on validation of
drivers and software. The enumeration delay is configured in milliseconds, representing the time delay between
enabling each successive port. Enumeration delay is applied when the hub powers on or when a new upstream
connection is made.

stem.hub.setEnumerationDelay () [cpp] [python] [NET] [LabVIENW]
stem.hub.getEnumerationDelay () [cpp] [python] [NET] [LabVIEW]

Data Behavior

The USBHub2x4 is capable of a few different behaviors for how it switches upstream port connections. It can
auto switch based on port priority or have a fixed upstream port. The method in which these events are handled
is referred to as data behavior.

List of Available Data Behaviors for USBHub2x4

Behavior Value Define

Hard Coded 0 usbsystemDataBehavior HardCoded
Reserved 1 usbsystemDataBehavior_Reserved
Port Priority 2 usbsystemDataBehavior_PortPriority

Hard Coded (Default Configuration)

The Hard Coded data behavior is used to fix the Upstream port to a single port and not allow it to move except
for a command through the Set Upstream API.

Port Priority

The Port Priority data behavior prioritizes making the Upstream port the lowest numbered port on the USB-
Hub2x4 that is capable of being an Upstream port.

Relevant API's

stem.hub.setDataRoleBehavior () [cpp] [python] [NET] [LabVIEW]
stem.hub.getDataRoleBehavior () [cpp] [python] [NET] [LabVIEW]

1.3. USBHub2x4 89

BrainStem Reference Manual, Release 2.11.1

Complete list of Supported Entities and Functions

Entity Class Entity Option Non Standard Value

App[0-3] execute
return
Pointer[0-3] getOffset
setOffset
getMode
setMode
getTransferStore
setTransferStore
initiate TransferToStore
initiate TransferFromStore
getChar
setChar
getShort
setShort
getint
setint
store[0-1] getSlotState
loadSlot
unloadSlot
slotEnable
slotDisable
slotCapacity
slotSize
system[0] getModel
getHardwareVersion
getModule
getRouter
setHBInterval
getHBInterval
setLED
getLED
setBootSlot
getBootSlot
getVersion
getSerialNumber
save
reset
getlnputVoltage
getModuleBaseAddress
getModuleSoftwareOffset
getRouterAddressSetting
getName
setName
resetDeviceToFactoryDefaults
timer[0-8] getExpiration
setExpiration
temperature[0] getTemperature
usb[0] setPortEnable Channels 0-3

continues on next page

920 Chapter 1. Devices

BrainStem Reference Manual, Release 2.11.1

Table 4 - continued from previous page

Entity Class

Entity Option

Non Standard Value

port[0-3]

setPortDisable
setDataEnable
setDataDisable
setHiSpeedDataEnable
setHiSpeedDataDisable
setPowerEnable
setPowerDisable
getPortVoltage
getPortCurrent
getPortCurrentLimit
setPortCurrentLimit
setPortMode
getPortMode
getDownstreamDataSpeed
getHubMode
setHubMode
getPortState
getPortError
getEnumerationDelay
setEnumerationDelay
clearPortErrorStatus
getUpstreamMode
setUpstreamMode
getUpstreamState
getUpstreamBoostMode
setUpstreamBoostMode
getDownstreamBoostMode
setDownstreamBoostMode
getEnabled

setEnabled
getDataEnabled
setDataEnabled
getDataHSEnabled
setDataHSEnabled
getPowerEnabled
setPowerEnabled
getHSBoost
setHSBoost

getMode

setMode
getCurrentLimit
setCurrentLimit
getVbusVoltage
getVbusCurrent
getState

getName

setName
getPowerMode
setPowerMode
getDataRole

Channels 0-3
Channels 0-3
Channels 0-3
Channels 0-3
Channels 0-3
Channels 0-3
Channels 0-3
Channels 0-3
Channels 0-3
Channels 0-3
Channels 0-3
Channels 0-3
Channels 0-3
Channels 0-3

Channels 0-3

continues on next page

1.3. USBHub2x4

91

BrainStem Reference Manual, Release 2.11.1

Table 4 - continued from previous page

Entity Class

Entity Option

Non Standard Value

port[4-5]

USBSystem [0]

getDataSpeed
getErrors
getHSBoost
setHSBoost
getName

setName
getDataRole
getUpstream
setUpstream
setDataRoleBehavior
getDataRoleBehavior
getEnumerationDelay
setEnumerationDelay

92

Chapter 1. Devices

BrainStem Reference Manual, Release 2.11.1

1.4 USB-C-Switch

1.4.1 Quick Start Guide

1. Download The Development Kit
+ Download the BrainStem Development Kit (BDK)® for your particular operating system and architecture.
+ Download HubTool® for your particular operating system and architecture.

2. Connect Device(s)

» Using the Acroname Unversal Orientation Cable (UOC), or any standard USB-C cables, connect the
Control and Common Ports of the USB-C-Switch to a device with access to the host device.

» Connect any other devices to any of Ports 0-3.

3. Run System

* Open HubTool
» On the bottom right side of the application select the USB-C-Switch device.

Note: Linux users will need run the script labeled “udev.sh” located in the “BrainStem_linux_Driverless” folder
before they will be able communicate with a BrainStem device.

Congratulations! You are now ready to start exploring the capabilities of the USB-C-Switch. For more infor-
mation please take a look at our Getting Started Guide

1.4.2 Basic Example

C++

#include <iostream>
#include "BrainStem2/BrainStem—all.h"

int main (int argc, const char * argv[]) {

// Connect to the hardware.

aUSBCSwitch cswitch;

auto err = cswitch.discoverAndConnect (USB) ;

if (err != aErrNone) {
printf ("Error %d encountered connecting to BrainStem module\n", err);
return 1;

} else { printf ("Connected to BrainStem module.\n"); }

//Prep USBCSwitch for testing
cswitch.usb.setPortDisable (0);
(continues on next page)

8 https:/acroname.com/api
9 https:/acroname.com/hubtool

1.4. USB-C-Switch 93

https://acroname.com/api
https://acroname.com/hubtool

BrainStem Reference Manual, Release 2.11.1

(continued from previous page)

cswitch.mux.setEnable (false);
cswitch.mux.setChannel (0);

SIS
//Do Stuff: other test initialization
LSS

//Ready for testing

//Enable Port AND Mux
cswitch.usb.setPortEnable (0);
cswitch.mux.setEnable (true) ;

0SS
//Do Stuff on Mux Channel 0
S/

cswitch.mux.setChannel (1) ;

0SS
//Do Stuff on Mux Channel 1
SIS

cswitch.mux.setChannel (2);

0SS
//Do Stuff on Mux Channel 2
SIS

cswitch.mux.setChannel (3);

0SS
//Do Stuff on Mux Channel 3
S0

//Finished with testing.
//De—initialize.
cswitch.usb.setPortDisable (0);
cswitch.mux.setEnable (false);

//Disconnect

cswitch.disconnect () ;
. } g
Python
_ N

import brainstem

For easy access to error constants
from brainstem.result import Result
from time import sleep

import sys

Create an instance of a USBCSwitch module.
cswitch = brainstem.stem.USBCSwitch ()

Locate and connect to the first object you find on USB
result = cswitch.discoverAndConnect (brainstem.link.Spec.USB)

(continues on next page)

94 Chapter 1. Devices

BrainStem Reference Manual, Release 2.11.1

(continued from previous page)

if result != Result.NO_ERROR:
print ("Error %d encountered connecting to BrainStem Module.\n" % (result))
sys.exit (1)

else:
print ("Connected to BrainStem module.\n")

##Prep USBCSwitch for testing
cswitch.usb.setPortDisable (0)
cswitch.mux.setEnable (False)
cswitch.mux.setChannel (0)

#EHAAHHAAHA
Do Stuff: other test initialization
#HAEHAAAHAAS

##Ready for testing
##Enable Port AND Mux
cswitch.usb.setPortEnable (0)
cswitch.mux.setEnable (True)

#EHA AR HAAHAS
##Do Stuff on Mux Channel 0
#AAHAAAHAAEA

cswitch.mux.setChannel (1)

#E#HHAFAFAAA
##Do Stuff on Mux Channel 1
#HEHAFAAAAHFAS

cswitch.mux.setChannel (2)

#E#HHAFAFAAA
##Do Stuff on Mux Channel 2
#HEHAFRAAAHFAH

cswitch.mux.setChannel (3)

#E#HHAAAFAAA
##Do Stuff on Mux Channel 3
#HEHAFAAAAFAS

#Finished with testing.
#De—-initialize.
cswitch.usb.setPortDisable (0)
cswitch.mux.setEnable (False)

Disconnect from device.
cswitch.disconnect ()
-

1.4. USB-C-Switch 95

BrainStem Reference Manual, Release 2.11.1

1.4.3 Indicators and Connections

USB Channels

g‘-’DE-C}
ommon

ELEE

| b J

I:II:I|
oo
| —

Type-C)
\ rainstem Contfrol/Power

B
peec) /eee [\mpea e,

LED Indicators

Side A USB Status Ch 0 Status
User LED Ch 2 Status

() O o
Power/HB LED, / SCh 3 Status
Side B USB Status Ch 1 Status

96 Chapter 1. Devices

BrainStem Reference Manual, Release 2.11.1

LED Name Color Description
User Blue Can be manipulated through the available APIs
Power/ Heartbeat Red/Green Red indicates system is powered. Flashing green is the heart-

beat which indicates an active software connection. Pulses at
a rate determined by the system heartbeat rate to indicate an
active BrainStem link.

Side A USB Status Green/Yellow/Grey Un-flipped/Flipped/CC1 Disabled

Side B USB Status Green/Yellow/Grey Un-flipped/Flipped/CC2 Disabled

Channel 0 Status Blue Indicates Mux Channel selection. Disabled when Split mode is
enabled.

Channel 1 Status Blue Indicates Mux Channel selection. Disabled when Split mode is
enabled.

Channel 2 Status Blue Indicates Mux Channel selection. Disabled when Split mode is
enabled.

Channel 3 Status Blue Indicates Mux Channel selection. Disabled when Split mode is
enabled.

1.4.4 Programming Interface

Generally, the Passive model is best for emulating off-the-shelf cables and for eye-diagram validation.

The Redriver model is optimal for general connectiviity or longer connections. It includes a programmable,
linear, equalizing redriver which allows USB signal tuning to compensate for insertion and cabling losses.

The USB-C-Switch contains many features. These features are organized into groups called entities. Through
these entities we can access the vast features of the USB-C-Switch.

A complete list of all entities and functions can be found in the Module Entities page.

Software Control

Software control of the features of the USB-C-Switch is done with the BrainStem API via a BrainStem link.
BrainStem links are done over USB and can be established via the Control Port. After this port is connected to
a host machine, a user can connect to it via software API:

[stem.link.discoverAndConnect(USB) }

When multiple Acroname devices are connected to a host, connecting to a specific hub can be done by pro-
viding the hub serial number. Further, all connected devices can be found using

brainstem.discover.findAllModules (USB) (Python)
Acroname: :BrainStem: :Link: :sDiscover () (C++)

1.4. USB-C-Switch 97

BrainStem Reference Manual, Release 2.11.1

Cable Flip

A key feature of the USB-C connector is its symmetric design allowing for insertion in either orientation. This
makes the USB-C connector user-friendly yet complicates the development of devices using the USB-C stan-
dard. The orientation is defined by the cable or downstream device in the system; more specifically, by compo-
nents inside of the USB-C male plug of a connection. The USB-C specification makes determining connector
orientation a responsibility of the active devices in the system.

With an Acroname UOC cable, the USB-C-Switch enables the unique ability to affect a cable orientation flip.
When this orientation flip occurs, it will appear to connected devices that the orientation of their connection has
reversed. Most USB-C devices with a female socket will include at least one set of muxes in order to route
signal to the correct side of the socket based on the orientation of the cable. When testing such a system it is
import to test both orientations to ensure that these internal muxes are functioning. The USB-C-Switch allows
flipping of USB-C cable connections to be programmatically automated.

Depicted below are the flip and no-flip setting for full-featured cable and device

WV meas x4
Haost BrainStam® Device
Sink
Vcw-
Flip { cc Ap
BMC FD Tt
controller
—-
Bi-directional
10Gbps SuperSpeed+,

Hi-Spead, SBU,
CC12, Vays

—

|
Haost BrainStam®

Mo 1
Flip

-~
Bi-diractional
10Gbps SuperSpeed+,

Hi-Spead, SBU,
G142, Vgys

A UOC should be used on either the common port or mux port to enable automated cable flips. The UOC
should be connected to the device under test.

When not using the cable flip feature, any standard USB-C cable can be used on both sides of the USB-C-
Switch. The orientation of the cables need to be matched in order to facilitate a connection through the switch.

98 Chapter 1. Devices

BrainStem Reference Manual, Release 2.11.1

Keep-Alive Charging (KAC)

Itis common to use battery powered devices on either side of the USB-C-Switch. When these devices are not
in the active path, either on the common or mux side, the device battery may discharge. The USB-C-Switch
has the unique feature of Keep-Alive Charging (KAC) for the mux channel connections.

Below is a diagram for the USB-C-Switch KAC capability:

Test Control Host L — 2
i?[] BrainStem® | USB Device
& =
=
3 : -~
§ ---4| USB Device
USB Host Ulﬁt]— Flip L
{..: -
USB Device
- -t
Bi-diractional |
10Gbps SuperSpeed+, : o
Hi-Speed, SBU,] .
CC112, Vous J USB Device
_______ KAC Charging

Mon-Selected Channel

p— Actvely Saelectled Channel

When KAC is enabled, the KAC circuit connects power from the control port VBUS to all non-selected mux
channel VBUS lines. KAC power is applied only to inactive mux channels and is not applied to the actively
selected mux channel since the actively selected channel has a power path to the common port. KAC is auto-
matically disabled when mux split mode is enabled.

Mux Modes

Default Mode

The default behavior of the USB-C-Switch is to act as a port selector, where all USB-C lines are connected
between the common port and one selected mux channel.

1.4. USB-C-Switch 99

BrainStem Reference Manual, Release 2.11.1

Channel Priority Mode

In channel priority mode, the USB-C-Switch automatically selects the lowest-numbered mux port where VBUS
is detected, enabling simple automatic host selection. Note that this will only work with USB A-to-C cables,
since VBUS is not immediately available on USB-C to USB-C connections.

Split Mode

In some cases, it is desirable to split the connections in a USB-C cable and route them to different mux paths.
A common application is to be able connect a USB device to a host machine for USB data while connecting
VBUS charging from a device specific charger.

Split mode gives control over individual signal groups, allowing each group to be connect to a mux channel.
VBUS can be connected to any combination of mux channels or disabled on the mux channels. Signal groups
under Split control assignment are: VBUS, SSA (TX1+/-, RX1+/-), SSB (TX2+/-, RX2+/-), HSA (D+/-, Side A),
HSB (D+/-, Side B), CC1, CC2, SBU1, and SBU2.

A basic example of the USB-C-Switch Mux split mode is depicted.

' oy

— LISB-C-Switch
UsSB-C
PD

_ Supply | Bi-directional

USB] | \

Host -
—— s L [ussc

f—]

Test
Control

] Vbus+CC
—

o

Vil meas
S
S

[]_ BrainStem®

V meas x4

LS

When split mode is enabled, USB-C-Switch will automatically disable the Keep-Alive-Charging (KAC) feature.

100 Chapter 1. Devices

BrainStem Reference Manual, Release 2.11.1

Device Drivers

The USB-C-Switch leverages operating system user space interfaces that do not require custom drivers for op-
eration on all modern operating systems including Windows, Linux and MacOS X. With a connection between a
host PC and the USB-C control port, the host PC will recognize a USB full-speed device named “USBCSwitch”.

Legacy operating systems like Windows 7 may require the installation of a BrainStem USB driver. Installation
details on installing USB drivers can be found within the BrainStem Development Kit under the “drivers” folder.

1.4.5 USB-C-Switch Module Entities
Equalizer

API Documentation: [cpp] [python] [.NET] [LabVIEW]

The Equalizer entity provides a concise interface for controlling equalizer and filter settings for receivers (inputs)
and transmitters (outputs). Products supporting Equalizer are capable of applying frequency dependent gain
to their signals. This can allow for compensation for signal loss and degradation due to cable quality, cable
length and the number of connections. It can also act as a filter implemented in hardware or firmware. Products
may implement on or more equalizers; each can be configured using the Equalizer index. Allowed index values
are specified in the product data sheet.

Note: The Equalizer Entity is only functional on the Redriver Version of the USB-C-Switch.

Equalizer Mapping and Entities

The redriver model of the switch provides two equalizer entities. They provide progammatic control over linear
equalizers and amplifiers (aka: redrivers) connected to the HS and SS sata lines. These equalizer entities
split the configuration between receiver-side and transmitter-side settings allowing for compensation of signal
intergrity loss due to cable quality, length, and insertoion losses. However, some of the settings can have
combined effects between receiver and transmitter modes. The two equalizer entities are indexed to their
respective data lines as defined below:

Index Equalizer Entity Mapping

0 USB2 High Speed
1 USB3 SuperSpeed

The transmitter is responsible for driving and selectively amplifying the signals traveling out the redriver hard-
ware after any receiver-side equalization. Each equalizer entity has transmitter options of:

stem.equalizer[x].setTransmitterConfig(confiqg) [cpp] [python] [NET] [LabVIEW]
stem.equalizer[x] .getTransmitterConfig(confiqg) [cpp] [python] [NET] [LabVIEW]

The receiver attempts to compensate for distortion of the incoming signal. Each equalizer entity has receiver
options such as:

stem.equalizer[x].setReceiverConfig(chan, confiqg) [cpp] [python] [NET] [LabVIEW]

stem.equalizer[x] .getReceiverConfig(chan, confiqg) [cpp] [python] [NET] [LabVIEW]

1.4. USB-C-Switch 101

BrainStem Reference Manual, Release 2.11.1

where (chan) paramters are defined below:

Value Receiver Channel

0 Applies setting to both common and mux sides
1 Applies settings to mux side
2 Applies settings to common side

High Speed Redriver Configuration

Due to the half-duplex nature of the USB2 data lines, there is only one receiver and transmitter setting for both
the common and mux ports. In addition, since the transmitter and receiver are tightly coupled, the linear gain
achieved by transmitter setting varies with the equalizer receiver configuration. Approximate gains for example
configurations are shown in the specifications table.

stem.equalizer[0] .setTransmitterConfig(confiqg) [cpp] [python] [NET] [LabVIEW]
stem.equalizer[0] .getTransmitterConfig(config) [cpp] [python] [NET] [LabVIEW]

The HS Equalizer entity transmitter option controls the gain applied to HS signals only; USB Low Speed (LS)
and Full Speed (FS) signals are unaffected and uncompensated. This option changes the DC boost applied to
HS signals which can help achieve sharper rising edges. The allowed values are shown below:

Value High Speed Transmitter Configuration

0 40mV DC Boost
1 60mV DC Boost
2 80mV DC Boost
3 0mV DC Boost (disabled)

The chan parameter of the HS equalier receiver option can only be 0 because the HS data lines are half-duplex.
All other values will result in an error return.

The HS equalizer receiver option configurations control the sensitivity of the redriver to incoming HS signals.
The effect of this change in sensitivity can be considered a variable AC boost turned to the specific HS signal
applied. Setting the HS equalizer to Level 0 will disable the HS redriver regardless of the HS entity transmitter
configuration. The available options are shown below:

stem.equalizer[0] .setReceiverConfig (0, confiqg) [cpp] [python] [NET] [LabVIEW]

stem.equalizer[0] .getReceiverConfig (0, confiqg) [cpp] [python] [NET] [LabVIEW]

High Speed Receiver Equalization

0 Level 1
1 Level 2
2 Level O (disabled)

102 Chapter 1. Devices

BrainStem Reference Manual, Release 2.11.1

Super Speed Redriver Configuration

The SS equalizer option controls various transmitter gains for each side of the ful-duplex SS data lines. Each
configuration combines the transmitter gain and approximate peak-to-peak voltage for both the common and
mux side transmitters. The available options are shown below.

stem.equalizer[l].setTransmitterConfig(confiqg) [cpp] [python] [NET] [LabVIEW]

stem.equalizer[l] .getTransmitterConfig(confiqg) [cpp] [python] [NET] [LabVIEW]

Value Mux Side Com Side Range

0 1db 0db 900mVpp
1 0db 1db 900mVpp
2 1db 1db 900mVpp
3 0db 0db 900mVpp
4 0db 0db 1100mVpp
5 1db 0db 1100mVpp
6 0db 1db 1100mVpp
7 2db 2db 1100mVpp
8 0db 0db 1300mVpp

The SS equalizers receiver option controls the receiver gain. The actual receiver gain is dependent on the
alt-mode configuration and the port data direction (mux to common vs common to mux). There are indepen-
dent receiver gain settings for the common and mux ports of the switch. Gains across settings, direction, and
frequency is shown here:

stem.equalizer[1].setReceiverConfig(0,confiqg) [cpp] [python] [NET] [LabVIEW]

stem.equalizer[l] .getReceiverConfig (0, confiqg) [cpp] [python] [NET] [LabVIEW]

Value SS Recieve Gain Lever

0-15 Increasing levels of gain

Mux

API Documentation: [cpp] [python] [.NET] [LabVIEW]

A MUX is a multiplexer that takes one or more similar inputs (bus, connection, or signal) and allows switching
to one or more outputs. An analogy would be the switchboard of a telephone operator. Calls (inputs) come
in and by re-connecting the input to an output, the operator (multiplexor) can direct that input to on or more
outputs.

One possible output is to not connect the input to anything which essentially disables that input’s connection
to anything. Not every MUX has multiple inputs.

Some mux entities can simply be a single input that can be enabled (connected to a single output) or disabled
(not connected to anything).

1.4. USB-C-Switch 103

BrainStem Reference Manual, Release 2.11.1

Mux Channel

The mux entity primarily selects one active mux port to connect to the common port using the channel option:
stem.mux.setChannel (channel) [cpp] [python] [NET] [LabVIEW]
stem.mux.getChannel (channel) [cpp] [python] [NET] [LabVIEW]

where (channel) is an index 0-3.

Mux Configuration

Default configuration of the mux is to switch all enabled USB-C lines to a single mux channel. If desired, the
swith can split the USB-C functional groupd and route them to selected mux ports. This feature is referred to as
“split mode”. The switch can also auto select the lowest Mux channel that currently has VBUS present which
is called “port priority”. Default, split mode, or port priority can be enabled with:

stem.mux.getConfiguration(confiqg) [cpp] [python] [NET] [LabVIEW]
stem.mux.setConfiguration (confiqg) [cpp] [python] [NET] [LabVIEW]
where (config) is 0 for default, 1 for Split Mode, and 2 for Port Priority Mode.

Split Mode

After enabling split mode the USB-C functional groups can be individually assigned to separate mux channels
with:

stem.mux.getSplitMode (splitMode) [cpp] [python] [NET] [LabVIEW]
stem.mux.setSplitMode (splitMode) [cpp] [python] [NET] [LabVIEW]

where (splitMode) is a 32-bit word, defined below. Each bit pair is a 2-bit binary number from 0-3 representing
the mux port to which to route the funtional signal group. Vbus and CC use 4-bits to define which mux ports are
connected to the common port Vbus/CC lines.

104 Chapter 1. Devices

BrainStem Reference Manual, Release 2.11.1

Bit Mux Split Mode Bit Map

0:1 SBU1

2:3 SBU2

4 CC1 enable CHO
5 CC1 enable CH1
6 CC1 enable CH2
7 CC1 enable CH3
8 CC2 enable CHO
9 CC2 enable CH1

10 CC2 enable CH2
11 CC2 enable CH3
12:13 HS Side A Data
14:15 HS Side B Data
16:17 SS Lane 1 Data
18:19 SS Lane 2 Data
20 Vbus enable CHO
21 Vbus enable CH1
22 Vbus enable CH2
23 Vbus enable CH3
24:31 Reserved

Note: The split mode interface changed in 2.10.0, ensure your firmware and software are up to date.

System

API Documentation: [cpp] [python] [.NET] [LabVIEW]

Every BrainStem module includes a single system entity. The system entity allows the retrieval and manipula-
tion of configuration settings like the module address and input voltage, control over the user LED, as well as
other functionality.

Serial Number

Every USB-C-Switch is assigned a unigue serial number at the factory. This facilitates an arbitrary number of
USB-C-Switch devices attached to a host computer. The following method call can retrieve the unique serial
number for each device.

stem.system.getSerialNumber (serialNumber) [cpp] [python] [NET] [LabVIEW]

1.4. USB-C-Switch 105

BrainStem Reference Manual, Release 2.11.1

Saved Settings

Some entities can be configured and saved to non-volatile memory. This allows a user to modify the startup
and operational behavior for the USB-C-Switch away from the factory default settings. Saving system settings
preserves the settings as the new default. Most changes to system settings require a save and reboot before
taking effect. For example, upstream and downstream USB Boost settings will not take effect unless a system
save operation is completed, followed by a reset or power cycle. Use the following command to save changes
to system settings before reboot:

stem.system.save () [cpp] [python] [NET] [LabVIEW]

Saved Configurations

USB Mode (usb) Equalizer Configuration (equalizer)
Mux Split Mode (mux) Mux Enable (mux)
Mux Configuration (mux) Mux Port (mux)

usB

API Documentation: [cpp] [python] [[NET] [LabVIEW]

The USB Entity provides the software control interface for USB related features. This entity is supported by
BrainStem products which have programmatically controlled USB features.

Alt. Mode Configuration (Redriver Only)

The redriver model USB-C-Switch provides an intermediary receiver and amplifier on the HS and SS data
lines. Various alt-modes such as DisplayPort require different directional uses of the SS data lines. As such, it
is required to define the alt-mode and direction of the connection. These modes are responsible for setting the
direction of the SS data lines and related SBU lines.

stem.usb.getAltModeConfig (0, configuration) [cpp] [python] [NET] [LabVIEW]
stem.usb.setAltModeConfig (0, configuration) [cpp] [python] [NET] [LabVIEW]

where configuration is an integer value defined below. Details of the pin mapping and data direction are also
depicted below.

106 Chapter 1. Devices

BrainStem Reference Manual, Release 2.11.1

Index Alt Mode Configuration

USB 3.1 Disabled

USB 3.1 Enabled

4 Lane DisplayPort Host on Common Port

4 Lane DisplayPort Host on Mux Port

2 Lane DisplayPort with USB 3.1 - Host on Common Port

2 Lane DisplayPort with USB 3.1 - Host on Mux Port

2 Lane DisplayPort Host on Common Port with USB 3.1 Inverted
2 Lane DisplayPort Host on Mux Port with USB 3.1 Inverted

Common
Port Pin

Nooabhwphd—=+0O

e 2Lane 2 Lane Color Key
4 Lane 2 Lane DisplayPor | DisplayPor
; 4 Lane DisplayPor USB HS
. DisplayP DisplayPor tHoston | tHoston
Redriver | USB Sk Lkt DisplayPor e tHoston | ~oeman ki with USB SS
Config 31 o t Host on Mux with Common | ith USB USB 3.1
Common | M | usai | &R 34 inverted | DisplayPort
: Inverted (alt-mode)
AZ e - = o s = «— B11 Al
Ad — — «— «— — — «— B10 Al0
A10 — e — — — e — B3 A3
A1 o = o - - o i B2 A2
B2 e s e - e R — All B11
B3 — — — — — — - A0 B10
B10 — 3 p= — — — — Ad B3
B11 — 5 o % — — — A2 B2
AB i > > e — o — B8 AB
B8 — > e e > e — AB B8
Cable Flip

The USB-C-Switch can simulate a cable flip by electrically switching the CC/VCONN and SBU lines between
side-A and side-B of the USB-C female sockets. USB data lines are also swapped accordingly. This flip can
be done with:

stem.usb.getCableFlip(setting) [cpp] [python] [NET] [LabVIEN]
stem.usb.setCableFlip(setting) [cpp] [python] [NET] [LabVIEW]

where the parameter (setting) is an interger value of 0 or 1, where 0 is normal and 1 is full cable flip.

1.4. USB-C-Switch 107

BrainStem Reference Manual, Release 2.11.1

Individual functional groups of the USB connection can be flipped using the portMode option.

CC Manipulation

The automatic orientation detection and connection functionality is interfaced with:
stem.usb.setConnectMode (0, mode) [cpp] [python] [NET] [LabVIEW]
where (mode) is a Boolean value of 0 or 1.

Manipulating the CC lines is done by calling:

stem.usb.setCClEnable (0, enabled) [cpp] [python] [NET] [LabVIEW]
stem.usb.setCC2Enable (0, enabled) [cpp] [python] [NET] [LabVIEW]
stem.usb.getCClEnable (0, enabled) [cpp] [python] [NET] [LabVIEW]
stem.usb.getCC2Enable (0, enable) [cpp] [python] [NET] [LabVIEW]
where (enable) is a Boolean vale of 0 or 1.

CC line current and voltage can be measured with:

stem.usb.getCC1lVoltage (0, pV) [cpp] [python] [NET] [LabVIEW]
stem.usb.setCC2Voltage (0, uV) [cpp] [python] [NET] [LabVIEW]
stem.usb.getCClCurrent (0, pA) [cpp] [python] [NET] [LabVIEW]
stem.usb.getCC2Current (0, pA) [cpp] [python] [NET] [LabVIEW]

where positive current is power transfer from the common port to the mux port.

Channel Control

The usb entity provides a mechanism to control and monitor all USB functionality on the common port. Individual
parts of the USB connection can be manipulated through the usb entity. For example, enable/disable USB data
and Vbus lines, measure current and voltage on Vbus, VCONN, and CC. The USB-C-Switch has one usb entity
class. It uses the mux entity to select one of the 4 mux channels to which to connect the enabled USB signals.

The usb entity splits the USB connection into tree going from most generic to most specific with usb entity
options at each level. Higher levels of the tree can be used to cause simultaneous changes on the lower levels.
The tree structure is port(Vbus, data(HS, SS), USB-C(CC1, CC2, SBU)).

The usb.setPortEnable/Disable entity option allows for manipulating all parts of the USB connection (HS data,
SS data, both CC and SBU lines, and Vbus lines) simultaneously.

stem.usb.setPortEnable (channel) [cpp] [python] [NET] [LabVIEW]
stem.usb.setPortDisable (channel) [cpp] [python] [NET] [LabVIEW]

Where channel is always 0 for the USB-C-Switch. Further examples of the usb entity will always show the
channel option as 0.

Manipulating USB data lines (HS and SS) simultaneously is done by calling:
stem.usb.setDataEnable (0) [cpp] [python] [NET] [LabVIEW]
stem.usb.setDataDisable (0) [cpp] [python] [NET] [LabVIEW]
Manipulating HS or SS data lines is done by calling:

stem.usb.setHiSpeedDataEnable (0 [cpp] [python] [NET] [LabVIEN]

108 Chapter 1. Devices

BrainStem Reference Manual, Release 2.11.1

stem.usb.setHiSpeedDataDisable (0) [cpp] [python] [NET] [LabVIEW]
stem.usb.setSuperSpeedDataEnable (0) [cpp] [python] [NET] [LabVIEW]
stem.usb.setSuperSpeedDataDisable (0) [cpp] [python] [NET] [LabVIEW]
Manipulating Vbus lines are done by calling:

stem.usb.setPowerEnable (0) [cpp] [python] [NET] [LabVIEW]

stem.usb.setPowerDisable (0) [cpp] [python] [NET] [LabVIEW]

Port Manipulation

Vbus voltage and current through the switch’s Vbus lines can be measured with:
stem.usb.getPortVoltage (0, uV) [cpp] [python] [NET] [LabVIEW]
stem.usb.getPortCurrent (0, pA) [cpp] [python] [NET] [LabVIEW]

where positive current is power transfer from the common port to the mux port.

Port Mode

The portMode option provides a bitmapped setting for granular control of the individual connections. The
portMode option is the desired mode of the port. The companion option, portState, is used to provide the
current state of the port.

stem.usb.getPortMode (0, mode) [cpp] [python] [NET] [LabVIEW]
stem.usb.setPortMode (0, mode) [cpp] [python] [NET] [LabVIEW]

where (mode) is a 32-bit word, defined below.

Bit Port Mode Bit Map

Reserved

Reserved

Keep Alive Charging Enable
Reserved

HS Side A Data enable

HS Side B Data enable
Vbus enable

SS Lane 1 Data enable

SS Lane 2 Data enable
9:10 Reserved

11 Auto Connect enable

12 CC1 enable

13 CC2 enable

14 SBU enable

15 CC Flip enable

16 Super-Speed Flip enable

17 SBU Flip enable

18 Hi-Speed Flip enable

19 CC1 Current Injection enable
20 CC2 Current Injection enable
21:31 Reserved

ONO O, WN 2O

1.4. USB-C-Switch 109

BrainStem Reference Manual, Release 2.11.1

Port Operational State

The portState option provide an interface to the state of the common port and internals of the USB-C-Switch
system.

stem.usb.getPortState (0, state) [cpp] [python] [NET] [LabVIEW]

where (state) is a 32-bit word, defined below.

Bit Port State Bit Map

Vbus enable

HS Side A Data enable
HS Side B Data enable
SBU enable

SS Lane 1 Data enable
SS Lane 2 Data enable
CC1 enable

CC2 enable

8:9 Reserved

10:11 Reserved

12:13 Reserved

14 CC Flip enable

15 Super-Speed Flip enable
16 SBU Flip enable

17 Reserved

19:18 Daughter-Card status
22:20 Reserved

23 Connection Established
24:25 Reserved

26 CC1 Current Injection
27 CC2 Current Injection
28 CC1 Pulse detect

29 CC2 Pulse detect

30 CC1 Logic state

31 CC2 Logic state

NoO o~ WN 2O

SBU Manipulation

stem.usb.setSBUEnable (0, enabled) [cpp] [python] [NET] [LabVIEW]
stem.usb.getSBUEnable (0, enabled) [cpp] [python] [NET] [LabVIEW]

where (enable) is a Boolean vale of 0 or 1.

110 Chapter 1. Devices

BrainStem Reference Manual, Release 2.11.1

Complete List of Supported Entities and Functions

Entity Class

Entity Option Variable(s) Notes

App[0-3]

Pointer[0-3]

store[0-1]

system[0]

timer[0-8]

usb[0]

execute

return

getOffset

setOffset

getMode

setMode
getTransferStore
setTransferStore

initiate TransferToStore
initiate TransferFromStore
getChar

setChar

getShort

setShort

getint

setint

getSlotState

loadSlot

unloadSlot

slotEnable

slotDisable

slotCapacity

slotSize

getModel
getHardwareVersion
getModule

getRouter

setHBInterval
getHBInterval

setLED

getLED

setBootSlot

getBootSlot

getVersion
getSerialNumber

save

reset

getinputVoltage
getModuleBaseAddress
getModuleSoftwareOffset
getRouterAddressSetting
getUptime

getName

setName

resetDevice ToFactoryDefaults
getExpiration
setExpiration
setPortEnable

continues on next page

1.4. USB-C-Switch

111

BrainStem Reference Manual, Release 2.11.1

Table 5 - continued from previous page
Entity Class Entity Option Variable(s) Notes

setPortDisable
setDataEnable
setDataDisable
setHiSpeedDataEnable
setHiSpeedDataDisable
setSuperSpeedDataEnable
setSuperSpeedDataDisable
setPowerEnable
setPowerDisable
getPortVoltage
getPortCurrent
getPortMode
setPortMode
getPortState
setCableFlip
getCableFlip
setConnectMode
getConnectMode
setCC1Enable
getCC1Enable
setCC2Enable
getCC2Enable
getCC1Voltage
getCC2Voltage
getCC1Current
getCC2Current
setSBUEnable
getSBUEnable

mux[0] setEnable
getEnable
setChannel
getChannel
getConfiguration
setConfiguration
getSplitMode
setSplitMode
getVoltage Channels 0-3

equalizer[0-1] setReceiverConfig
getReceiverConfig
setTransmitterConfig
getTransmitterConfig

112 Chapter 1. Devices

BrainStem Reference Manual, Release 2.11.1

1.5 MTM Products

Manufacturing Test Module (MTM) Series instrumentation from Acroname is the platform you need to free your
production testers from the burdens of validation test equipment. Mix and match modules to create a complete
tester within a fixture frame, eliminating benchtop and rack equipment - all without sacrificing the robustness
and reusability you demand from your equipment. And when you are ready to scale your production line, MTM
enables rapid replication of inexpensive testers that are repeatable. So mass-production testers behave the
same way as the ramp station.

1.5.1 MTM-Relay

'r.-.l.lr.'.lr.'.l_n'.'_lr.ur.i :

As part of Acroname’s MTM series, the MTM-Relay module is a key component to automated manufacturing
test systems requiring switching of industrial control voltages. The MTM-Relay module features four software-
controlled solid-state relays (SSR). Each relay can handle up to 60V and 6ADC/RMS. The powerful BrainStem
API allows simple networking of multiple modules into one system, and can report each channel’s voltage.

The module also provides four digital (3.3V) GPIO to support module integration and provide additional capa-
bility, as necessary.

To get up to speed with the MTM Relay and quickly learn about its functionality follow the quick start guide.

1.5. MTM Products 113

BrainStem Reference Manual, Release 2.11.1

Have a look at the basic example or dive into the Programming interface of the MTM Relay for a more in depth
view.

Quick Start Guide

1. Download The Development Kit

+ Download the BrainStem Development Kit (BDK)C for your particular operating system and architecture.

+ Download HubTool'" for your particular operating system and architecture.

2. Connect to Device

 Utilize the MTM Relay by either connecting to the:
— Onboard USB connection
— Card edge USB input

— Through other MTM modules on the local BrainStem bus.

3. Run System

* Open HubTool
» On the bottom right side of the application select the MTM Relay device.

Note: Linux users will need run the script labeled “udev.sh” located in the “BrainStem_linux_Driverless” folder
before they will be able communicate with a BrainStem device.

Congratulations! You are now ready to start exploring the capabilities of the MTM Relay. For more information
please take a look at our Getting Started Guide

Basic Example

C++

#include <iostream>
#include "BrainStem2/BrainStem-all.h"

int main(int argc, const char * argv[]) {

//Create an instance of a MTM-RELAY module.
aMTMRelay mtm;

//Connect to the hardware.
err = mtm.discoverAndConnect (1inkType, serialNumber, modelNumber)
if (err != aErrNone) {
printf ("Error %d encountered connecting to BrainStem module\n", err);

(continues on next page)

10 https://acroname.com/api
™ https://acroname.com/hubtool

114 Chapter 1. Devices

https://acroname.com/api
https://acroname.com/hubtool

BrainStem Reference Manual, Release 2.11.1

(continued from previous page)

return 1;
} else { printf ("Connected to BrainStem module.\n"); }

//Basic initialization (Get LEDs turned off).
mtm.system.setLED (0) ;

//Ready for testing
//Enable LED
mtm.system.setLED (1) ;

//Turn LED off
mtm.system.setLED (0) ;

//Disconnect
mtm.disconnect () ;
\} i
Python
g B

import brainstem

#for easy access to error constants
from brainstem.result import Result
import time

import sys

Create an instance of a MTM-RELAY module.
mtm = brainstem.stem.MTMRelay () ;

Locate and connect to the first object you find on MTM

result = hub.mtm.discoverAndConnect (1linkType, serialNumber, modelNumber)
if result != Result.NO_ERROR:

print ("Error %d encountered connecting to BrainStem Module.\n" % result)
else:

print ("Connected to BrainStem module.\n")

#Basic initialization (Get everything turned off).
mtm.system.setLED (0)

##Ready for testing
##Enable LED
mtm.system.setLED (1)

##Finished with testing.
##Turn off LED
mtm.system.setLED (0)

Disconnect from device.

mtm.disconnect () ;

print ("Disconnected from BrainStem module. \n")
.

1.5. MTM Products 115

BrainStem Reference Manual, Release 2.11.1

Indicators and Connections

LEDs

The MTM Relay board has a number of LED indicators to assist with MTM system development, debugging,

and monitoring. These LEDs are shown in the diagrams below.

. D Ts.

H ..- .=‘ 1 . EE

o nE !
US Status T o gmn g
. N gn

Relay0 Status
Relay1 Status
Relay2 Status
Relay3 Status

sessssssssee

vy v

AR AR
vy

Figure 3: MTM-Relay LED Indicators

Programming Interface

The MTM-Relay is capable of many features. These features are organized into groups called entities. Through

these entities we can access the vast features of the MTM-Relay.

A complete list of all entities and functions can be found in the Module Entities page.

Software Control

A BrainStem link can be established that will give the user access to the resources available on the MTM-
Relay. The module can then be controlled via a host running BrainStem APIs or operated independently by
running locally embedded, user-defined programs based on Acroname’s BrainStem Reflex language in the
RTOS. A BrainStem link to the MTM-Relay can be established via one of three (3) interfaces: the onboard
USB connection, the card-edge USB connection, or through another MTM module using the BrainStemprotocol
(more on this interface below). For the USB connection options, once the MTM-Relay is attached to a host

machine, a user can connect to it via software API:

[stem .discoverAndConnect (1linkType, serialNumber)

The MTM-Relay can also work within a network of other Brainstem modules, such as in a test fixture, to give
access to the capabilities of all networked modules. On the MTM platform, networked modules communicate
using the Brainstem protocol, which is transmitted over 12C. Each MTM-Relay is uniquely addressable via

hardware or software to avoid communication conflicts on the 12C bus.

116

Chapter 1. Devices

BrainStem Reference Manual, Release 2.11.1

Upstream USB Connectivity Options

The MTM-Relay supports upstream USB connections (to communicate to a host PC) via the mini-B connector,
or through pins B14 and B15 of the PCle edge connector. The module defaults to using the edge connector
and will switch to the miniB connector if 5V is present on Vbus at the mini-B connector.

MTM-RELAY Module Entities
Digital

API Documentation: [cpp] [python] [.NET] [LabVIEW]

BrainStem modules may have the ability to read, write or manipulate a digital pin. Digital I/O capabilities will
be dictated by the module hardware being used. Module specifics that include the quantity of digital entities
and details for their capacities will be described in that module’s datasheet.

Set/Get Configurations

Gets or Sets the digital pin configuration. Some digital entities may be single purpose functionality or can
be configured for multiple behaviors depending on the hardware. Digital entities that are capable of different
operating configurations can be explicitly set to operate in a desired configuration mode when possible. Defaults
for most digital entities are typically as inputs, but will vary by module hardware.

stem.digital [index] .setConfiguration (mode) [cpp] [python] [NET] [LabVIEW]
stem.digital[index] .getConfiguration (mode) [cpp] [python] [NET] [LabVIEW]

The mode parameter is an integer that correlates to the following:

Value Configuration

0 Input

1 Output

4 Hi Impedance (Hi-Z)
5 Input with Pull Down

Set/Get State

Gets or Sets the digital I/O Value. For gets the digital input state will be reported in a boolean fashion. Voltage
threshold tolerance details for the target module will be described in the datasheet. For sets the digital output
state will be asserted logic high or logic low. Voltage threshold details for the target module will be described
in the datasheet.

stem.digital[index] .setState(level) [cpp] [python] [NET] [LabVIEW]

stem.digital [index] .getState (level) [cpp] [python] [NET] [LabVIEW]

1.5. MTM Products 117

BrainStem Reference Manual, Release 2.11.1

If a digital pin is configured in Hi-Z mode its internal circuitry has been disconnected to create a high impedance.
There are no functions that can act on this configuration

Digital Input Output HighZ RCServo Signal

DIOO Yes Yes Yes None None
DIO 1 Yes Yes Yes None None
DIO 2 Yes Yes Yes None None
DIO 3 Yes Yes Yes None None

12C

API Documentation: [cpp] [python] [[NET] [LabVIEW]

BrainStem modules may have the ability to read, write data on up to 2 12C bus’s

Read/Write Data

BrainStem modules may have the ability to read, write data on up to 2 12C bus’s. The MTM-RELAY includes
access to a single 12C bus operating at a set 1Mbit/s rate.

Note: The 1Mbit/s bus, while user-accessible, is also used for BrainStem network communication so there
may be other, non-user-initiated traffic when other BrainStem modules are linked.

stem.i2c[index] .read(address, length) [cpp] [python] [NET] [LabVIEW]
stem.i2c[index] .write (address, length) [cpp] [python] [NET] [LabVIEW]

The maximum data size for individual read and write operations on an 12C bus through the BrainStem API is
20 bytes. Sending more than 20 bytes of information must be done as an iterated sequence.

Pullup

Each 12C bus also includes 330Q pull-up resistors on the SDA and SCL lines, disabled by default. When using
the MTM-RELAY in a linked system (communicating over the 1Mbit/s bus), only a single set of pull-ups along
the bus should be enabled in order for the 12C bus to work properly (if more than one set is enabled, the lines
cannot be pulled low for communication). Similarly, when using a single MTM device to communicate with an
external device over the 12C bus, either the internal pull-ups can be enabled, or external hardware pull-ups
added.

stem.i2c[index] .setPullup (bEnable) [cpp] [python] [NET] [LabVIEW]

118 Chapter 1. Devices

BrainStem Reference Manual, Release 2.11.1

Relay

API Documentation: [cpp] [python] [.NET] [LabVIEW]

The Relay entity is a simple class which allows the enabling and disabling of a specified relay.

Get/Set Enable

The MTM-Relay has four (4) optically isolated solid-state relays controlled by the relay entity. Each relay is
controllable via software and capable of 60V and 6A continuous current load.

Enables the relay channel for the specified index.
stem.relay[index] .setEnable () [cpp] [python] [NET] [LabVIEW]

stem.relay[index] .getEnable () [cpp] [python] [NET] [LabVIEW]

Get Voltage

Returns the voltage of the specified index.

stem.relay[index] .getVoltage () [cpp] [python] [NET] [LabVIEW]

Store

API Documentation: [cpp] [python] [.NET] [LabVIEW]

Every BrainStem module has one or more stores. Stores are the BrainStem equivalent of a filesystem. Stores
are broken up into a number of slots, each of which can be thought of as a file. A Store generally represents a
specific type of storage. Flash or internal, RAM, or SD if the BrainStem includes an SD slot. The most common
usage of slots and stores is for the storage of reflex code that will run on the BrainStem module. Additionally
Bulk capture of Analog data can write to a slot within a store. Slots within the internal store can be set up as
boot slots by setting the appropriate slot number in the system configuration. See the :doc:” System <system>’
entity for more information about setting a boot slot.

The number and type of stores is Model specific. Details about the number of slots per store, and available
stores can be found in the data sheets for specific models.

There are a number of commands for manipulating stores, which are detailed below. Many of the store com-
mands are only accessible from host API’s and Ul applications, however commands relating to enabling reflex
files in slots are accessible from the reflex language.

Every BrainStem module includes several Store entities and onboard memory slots to load Reflex files (for
details on Reflex, see Reflex Language Reference). One Reflex file can be stored per slot.

The MTM-RELAY has store slots [0-1].

Store Slot Storage Type

0 RAM
1 Internal

1.5. MTM Products 119

BrainStem Reference Manual, Release 2.11.1

Get Slot State

For slots which hold reflexes, this read only command returns whether the slot is currently enabled or not. 1 is
enabled 0 is disabled. This command can be called from a reflex.

stem.store[index] .getSlotState(slot) [cpp] [python] [NET] [LabVIEW]

Load/Unload Slot

This command writes a data buffer into a slot for the given store. It is only available from host side API’s.
stem.store[index] .loadSlot (slot, data, _=None) [cpp] [python] [NET] [LabVIEW]

This command reads the slot in the given store into the byte buffer. The length will never be more than the max
buffer size given, but may be less if the slot contents were shorter than max buffer length.

stem.store[index] .unloadSlot (slot) [cpp] [python] [NET] [LabVIEW]

Enable/Disable Slot

This command enables the reflex file in the given store and slot. This command is accessible from the reflex
language.

stem.store[index] .slotEnable(slot) [cpp] [python] [NET] [LabVIEW]

This command disables the reflex file in the given store and slot. This command is accessible from the reflex
language.

stem.store[index] .slotDisable(slot) [cpp] [python] [NET] [LabVIEW]

Slot Capacity

This command gets the maximum capacity of the given slot for the store. This command is accessible from the
reflex language.

stem.store[index] .slotCapacity (slot) [cpp] [python] [NET] [LabVIEW]

Slot Size

This command gets the current size of the data in the given slot for the store. This can be the size in bytes of
the reflex byte code file, or the data size for a bulk capture.

stem.store[index] .slotSize (slot) [cpp] [python] [NET] [LabVIEW]

120 Chapter 1. Devices

BrainStem Reference Manual, Release 2.11.1

System

API Documentation: [cpp] [python] [.NET] [LabVIEW]

Every BrainStem module includes a single system entity. The system entity allows the retrieval and manipula-
tion of configuration settings like the module address and input voltage, control over the user LED, as well as
other functionality.

Serial Number

Every MTM-RELAY is assigned a unique serial number at the factory. This facilitates an arbitrary number of
MTM-RELAY devices attached to a host computer. The following method call can retrieve the unique serial
number for each device.

stem.system.getSerialNumber (serialNumber) [cpp] [python] [NET] [LabVIEW]

Module Default Base Address

BrainStems are designed to be able to form a reactive, extensible network. All BrainStem modules come with
a default network base address for identification on the BrainStem network bus. The default module base
address for MTM-RELAY is factory-set as 6, and can be accessed with.

stem.system.getModule (module) [cpp] [python] [NET] [LabVIEW]

Saved Settings

Some entities can be configured and saved to non-volatile memory. This allows a user to modify the startup
and operational behavior for the MTM-RELAY away from the factory default settings. Saving system settings
preserves the settings as the new default. Most changes to system settings require a save and reboot before
taking effect. For example, upstream and downstream USB Boost settings will not take effect unless a system
save operation is completed, followed by a reset or power cycle. Use the following command to save changes
to system settings before reboot:

stem.system.save () [cpp] [python] [NET] [LabVIEW]

1.5. MTM Products 121

BrainStem Reference Manual, Release 2.11.1

Saved Configurations

Module Software Offset 12C Rate
Router Address 12C Pullup State
Heartbeat Rate Boot Slot

Reset

Reset the system.

stem.system.reset () [cpp] [python] [NET] [LabVIEW]

Get/Set LED

Set the system LED state. Most modules have a blue system LED. Refer to the module datasheet for details
on the system LED location and color.

stem.system.getLED (value) [cpp] [python] [NET] [LabVIEW]

stem.system.setLED (value) [cpp] [python] [NET] [LabVIEW]

Get/Set Boot Slot

Get the store slot which is mapped when the module boots. Set a store slot to be mapped when the module
boots.

The boot slot will be mapped after the module boots from powers up, receives a reset signal on its reset input,
or is issued a software reset command. Set the slot to 255 to disable mapping on boot.

stem.system.getBootSlot () [cpp] [python] [NET] [LabVIEW]

stem.system.setBootSlot (value) [cpp] [python] [NET] [LabVIEW]

Get Input Voltage

Get the module’s input voltage.

stem.system.getInputVoltage () [cpp] [python] [NET] [LabVIEW]

122 Chapter 1. Devices

BrainStem Reference Manual, Release 2.11.1

Get Version
Get the modules firmware version number.

The version number is packed into the return value. Ultility functions in the Version module can unpack the
major, minor and patch numbers from the version number which looks like M.m.p.

stem.system.getVersion () [cpp] [python] [NET] [LabVIEW]

Get/Set Module Software Offset

Set the software address offset.

The module software offset is added to the base module address, and potentially a hardware offset to determine
the final calculated address the module uses on the BrainStem network. You must save and reset the module
for this change to become effective.

stem.system.getModuleSoftwareOffset () [cpp] [python] [NET] [LabVIEW]

stem.system.setModuleSoftwareOffset (value) [cpp] [python] [NET] [LabVIEW]

Get/Set HB Interval

Get the delay between heartbeat packets. Set the delay between heartbeat packets.

For link modules, these heartbeat are sent to the host. For non-link modules, these heartbeats are sent to the
router address. Interval values are in 25.6 millisecond increments. Increments valid values are 1-255; default
is 10 (256 milliseconds).

stem.system.getHBInterval () [cpp] [python] [NET] [LabVIEW]

stem.system.setHBInterval (value) [cpp] [python] [NET] [LabVIEW]

Get/Set Router

Get the router address the module uses to communicate with the host. Set the router address the module uses
to communicate with the host.

stem.system.getRouter () [cpp] [python] [NET] [LabVIEW]

stem.system.setRouter (value) [cpp] [python] [NET] [LabVIEW]

1.5. MTM Products 123

BrainStem Reference Manual, Release 2.11.1

Get Router Address Setting

Get the router address setting saved in the module. This setting may be different from the effective router if the
router has been set and saved but no reset has been made.

stem.system.getRouterAddressSetting () [cpp] [python] [NET] [LabVIEW]

Get Module

Get the address the module uses on the BrainStem network.

stem.system.getModule () [cpp] [python] [NET] [LabVIEW]

Get Model

Get the module’s model enumeration.

A subset of the possible model enumerations is defined in aProtocolDefs.h under “BrainStem model codes”.
Other codes are be used by Acroname for proprietary module types.

stem.system.getModel () [cpp] [python] [NET] [LabVIEW]

Route to Me

Enables/Disables the route to me function.

This function allows for easy networking of BrainStem modules. Enabling (1) this function will send an 12C
General Call to all devices on the network and request that they change their router address to the of the calling
device. Disabling (0) will cause all devices on the BrainStem network to revert to their default address.

stem.system.routeToMe (value) [cpp] [python] [NET] [LabVIEW]

Complete list of Supported Entities and Functions

Entity Class Entity Option Variable(s) Notes

digital[0-3] setConfiguration
getConfiguration
setState
getState

i2c[0] write
read

relay[0-3] setEnable
getEnable

continues on next page

124 Chapter 1. Devices

BrainStem Reference Manual, Release 2.11.1

Table 6 - continued from previous page
Entity Class Entity Option Variable(s) Notes

getVoltage
store[0-1] getSlotState
loadSlot
unloadSlot
slotEnable
slotDisable
slotCapacity
slotSize
system][0] save
reset
setLED
getLED
setBootSlot
getBootSlot

getlnputVoltage
getVersion
getModuleBaseAddress
getModuleSoftwareOffset
setModuleSoftwareOffset
getModuleHardwareOffset
setHBlInterval
getHBInterval
getRouterAddressSetting
getModule
getSerialNumber
setRouter

getRouter

getModel

routeToMe

1.5.2 MTM-DAQ-2

The MTM-DAQ-2 module, part of Acroname’s Manufacturing Test Module (MTM) instrumentation series, is a
modular, software-controlled analog data acquisition (DAQ) module, designed for precision measurements of
analog voltages in manufacturing or R&D test.

The MTM-DAQ-2 has 14 channels of differential bi-polar analog inputs with individually adjustable ranges.
Precision voltage measurements can be made through the powerful and cross-platform BrainStem API.

The MTM-DAQ-2 is optimized specifically for precision analog measurement of voltages for sensor and current-
sense (through shunt resistors) applications in high-throughput manufacturing test environments.

1.5. MTM Products 125

BrainStem Reference Manual, Release 2.11.1

To get up to speed with the MTM DAQ-2 and quickly learn about its functionality follow the quick start guide.
Have a look at the basic example or dive into the Programming interface of the MTM Power Module for a more
in depth view.

Quick Start Guide

1. Download The Development Kit

+ Download the BrainStem Development Kit (BDK)'? for your particular operating system and architecture.

+ Download HubTool' for your particular operating system and architecture.

2. Connect to Device

« Utilize the MTM DAQ-2 by either connecting to the:
— Onboard USB connection
— Card edge USB input

— Through other MTM modules on the local BrainStem bus.

3. Run System

* Open HubTool
» On the bottom right side of the application select the MTM DAQ-2 device.

Note: Linux users will need run the script labeled “udev.sh” located in the “BrainStem_linux_Driverless” folder
before they will be able communicate with a BrainStem device.

Congratulations! You are now ready to start exploring the capabilities of the MTM Relay. For more information
please take a look at our Getting Started Guide

Basic Example

C++

#include <iostream>
#include "BrainStem2/BrainStem—all.h"

int main (int argc, const char * argv[]) {

//Create an instance of a MTM-DAQ-2 module.
aMTMDAQ2 mtm;

//Connect to the hardware.
err = mtm.discoverAndConnect (1linkType, serialNumber, modelNumber)
if (err != aErrNone) {

(continues on next page)

12 https://acroname.com/api
13 https://acroname.com/hubtool

126 Chapter 1. Devices

https://acroname.com/api
https://acroname.com/hubtool

BrainStem Reference Manual, Release 2.11.1

(continued from previous page)

printf ("Error %d encountered connecting to BrainStem module\n", err);
return 1;

} else { printf ("Connected to BrainStem module.\n"); }

//Basic initialization (Get LEDs turned off).
mtm.system.setLED (0) ;

//Ready for testing
//Enable LED
mtm.system.setLED (1) ;

//Turn LED off
mtm.system.setLED (0) ;

//Disconnect
mtm.disconnect () ;
}
Python

import brainstem

#for easy access to error constants
from brainstem.result import Result
import time

import sys

Create an instance of a MTM-DAQ-2 module.
mtm = brainstem.stem.MTMDAQ2 () ;

Locate and connect to the first object you find on MTM
result = hub.mtm.discoverAndConnect (1linkType, serialNumber, modelNumber)
if result != Result.NO_ERROR:
print ("Error %d encountered connecting to BrainStem Module.\n" $ result)
else:
print ("Connected to BrainStem module.\n")

#Basic initialization (Get everything turned off).
mtm.system.setLED (0)

##Ready for testing
##Enable LED
mtm.system.setLED (1)

##Finished with testing.
##Turn off LED
mtm.system.setLED (0)

Disconnect from device.
mtm.disconnect () ;
print ("Disconnected from BrainStem module. \n")

1.5. MTM Products 127

BrainStem Reference Manual, Release 2.11.1

Indicators and Connections

LEDs

The MTM-DAQ-2 board has five LED indicators to assist with MTM system development, debugging, and
monitoring. These LEDs are shown in the diagrams below

USB Status
User LED "
Hearfbeal 5. . :
Power P ol WAl] =0
Watchdog e i"".i‘; N R T
Diaieg f
01 DAL
P

|

Programming Interface

The MTM-DAQ-2 is capable of many features. These features are organized into groups called entities.
Through these entities we can access the vast features of the MTM-DAQ-2.

A complete list of all entities and functions can be found in the Module Entities page.

Software Control

A BrainStem link can be established that will give the user access to the resources available on the MTM-
DAQ-2. The module can then be controlled via a host running BrainStem APls or operated independently by
running locally embedded, user-defined programs based on Acroname’s BrainStem Reflex language in the
RTOS. A BrainStem link to the MTM-DAQ-2 can be established via one of three (3) interfaces: the onboard
USB connection, the card-edge USB connection, or through another MTM module using the BrainStemprotocol
(more on this interface below). For the USB connection options, once the MTM-DAQ-2 is attached to a host
machine, a user can connect to it via software API:

[stem .discoverAndConnect (linkType, serialNumber)]

The MTM-DAQ-2 can also work within a network of other Brainstem modules, such as in a test fixture, to give
access to the capabilities of all networked modules. On the MTM platform, networked modules communicate
using the Brainstem protocol, which is transmitted over 12C. Each MTM-DAQ-2 is uniquely addressable via
hardware or software to avoid communication conflicts on the 12C bus.

128 Chapter 1. Devices

BrainStem Reference Manual, Release 2.11.1

Upstream USB Connectivity Options

The MTM-DAQ-2 supports upstream USB connections (to communicate to a host PC) via the mini-B connector,
or through pins B14 and B15 of the PCle edge connector. The module defaults to using the edge connector
and will switch to the miniB connector if 5V is present on Vbus at the mini-B connector.

MTM-DAQ-2 Module Entities

System

API Documentation: [cpp] [python] [[NET] [LabVIEW]

Every BrainStem module includes a single system entity. The system entity allows the retrieval and manipula-
tion of configuration settings like the module address and input voltage, control over the user LED, as well as
other functionality.

Serial Number

Every MTM-DAQ-2 is assigned a unique serial number at the factory. This facilitates an arbitrary number of
MTM-DAQ-2 devices attached to a host computer. The following method call can retrieve the unique serial
number for each device.

stem.system.getSerialNumber (serialNumber) [cpp] [python] [NET] [LabVIEW]

Module Default Base Address

BrainStems are designed to be able to form a reactive, extensible network. All BrainStem modules come with
a default network base address for identification on the BrainStem network bus. The default module base
address for MTM-DAQ-2 is factory-set as 6, and can be accessed with.

stem.system.getModule (module) [cpp] [python] [NET] [LabVIEW]

Saved Settings

Some entities can be configured and saved to non-volatile memory. This allows a user to modify the startup
and operational behavior for the MTM-DAQ-2 away from the factory default settings. Saving system settings
preserves the settings as the new default. Most changes to system settings require a save and reboot before
taking effect. For example, upstream and downstream USB Boost settings will not take effect unless a system
save operation is completed, followed by a reset or power cycle. Use the following command to save changes
to system settings before reboot:

stem.system.save () [cpp] [python] [NET] [LabVIEW]

Saved Configurations

Module Software Offset 12C Rate
Router Address I2C Pullup State
Heartbeat Rate Boot Slot

1.5. MTM Products 129

BrainStem Reference Manual, Release 2.11.1

Reset

Reset the system.

stem.system.reset () [cpp] [python] [NET] [LabVIEW]

Get/Set LED

Set the system LED state. Most modules have a blue system LED. Refer to the module datasheet for details
on the system LED location and color.

stem.system.getLED (value) [cpp] [python] [NET] [LabVIEW]

stem.system.setLED (value) [cpp] [python] [NET] [LabVIEW]

Get/Set Boot Slot
Get the store slot which is mapped when the module boots. Set a store slot to be mapped when the module

boots.

The boot slot will be mapped after the module boots from powers up, receives a reset signal on its reset input,
or is issued a software reset command. Set the slot to 255 to disable mapping on boot.

stem.system.getBootSlot () [cpp] [python] [NET] [LabVIEW]

stem.system.setBootSlot (value) [cpp] [python] [NET] [LabVIEW]

Get Input Voltage

Get the module’s input voltage.

stem.system.getInputVoltage () [cpp] [python] [NET] [LabVIEW]

Get Version

Get the modules firmware version number.

The version number is packed into the return value. Utility functions in the Version module can unpack the
major, minor and patch numbers from the version number which looks like M.m.p.

stem.system.getVersion () [cpp] [python] [NET] [LabVIEW]

130 Chapter 1. Devices

BrainStem Reference Manual, Release 2.11.1

Get/Set Module Software Offset
Set the software address offset.
The module software offset is added to the base module address, and potentially a hardware offset to determine

the final calculated address the module uses on the BrainStem network. You must save and reset the module
for this change to become effective.

stem.system.getModuleSoftwareOffset () [cpp] [python] [NET] [LabVIEW]

stem.system.setModuleSoftwareOffset (value) [cpp] [python] [NET] [LabVIEW]

Get/Set HB Interval

Get the delay between heartbeat packets. Set the delay between heartbeat packets.

For link modules, these heartbeat are sent to the host. For non-link modules, these heartbeats are sent to the
router address. Interval values are in 25.6 millisecond increments. Increments valid values are 1-255; default
is 10 (256 milliseconds).

stem.system.getHBInterval () [cpp] [python] [NET] [LabVIEW]

stem.system.setHBInterval (value) [cpp] [python] [NET] [LabVIEW]

Get/Set Router

Get the router address the module uses to communicate with the host. Set the router address the module uses
to communicate with the host.

stem.system.getRouter () [cpp] [python] [NET] [LabVIEW]

stem.system.setRouter (value) [cpp] [python] [NET] [LabVIEW]

Get Router Address Setting

Get the router address setting saved in the module. This setting may be different from the effective router if the
router has been set and saved but no reset has been made.

stem.system.getRouterAddressSetting () [cpp] [python] [NET] [LabVIEW]

1.5. MTM Products 131

BrainStem Reference Manual, Release 2.11.1

Get Module

Get the address the module uses on the BrainStem network.

stem.system.getModule () [cpp] [python] [NET] [LabVIEW]

Get Model

Get the module’s model enumeration.

A subset of the possible model enumerations is defined in aProtocolDefs.h under “BrainStem model codes”.
Other codes are be used by Acroname for proprietary module types.

stem.system.getModel () [cpp] [python] [NET] [LabVIEW]

Route to Me

Enables/Disables the route to me function.

This function allows for easy networking of BrainStem modules. Enabling (1) this function will send an 12C
General Call to all devices on the network and request that they change their router address to the of the calling
device. Disabling (0) will cause all devices on the BrainStem network to revert to their default address.

stem.system.routeToMe (value) [cpp] [python] [NET] [LabVIEW]

Store

API Documentation: [cpp] [python] [.NET] [LabVIEW]

Every BrainStem module has one or more stores. Stores are the BrainStem equivalent of a filesystem. Stores
are broken up into a number of slots, each of which can be thought of as a file. A Store generally represents a
specific type of storage. Flash or internal, RAM, or SD if the BrainStem includes an SD slot. The most common
usage of slots and stores is for the storage of reflex code that will run on the BrainStem module. Additionally
Bulk capture of Analog data can write to a slot within a store. Slots within the internal store can be set up as
boot slots by setting the appropriate slot number in the system configuration. See the :doc:” System <system>"
entity for more information about setting a boot slot.

The number and type of stores is Model specific. Details about the number of slots per store, and available
stores can be found in the data sheets for specific models.

There are a number of commands for manipulating stores, which are detailed below. Many of the store com-
mands are only accessible from host API’s and Ul applications, however commands relating to enabling reflex
files in slots are accessible from the reflex language.

Every BrainStem module includes several Store entities and onboard memory slots to load Reflex files (for
details on Reflex, see Refiex Language Reference). One Refiex file can be stored per slot.

The MTM-DAQ-2 has store slots [0-1].

132 Chapter 1. Devices

BrainStem Reference Manual, Release 2.11.1

Store Index Storage Type Number of Slots

0 Internal 12
1 RAM 1

Get Slot State

For slots which hold reflexes, this read only command returns whether the slot is currently enabled or not. 1 is
enabled 0 is disabled. This command can be called from a reflex.

stem.store[index] .getSlotState(slot) [cpp] [python] [NET] [LabVIEW]

Load/Unload Slot

This command writes a data buffer into a slot for the given store. It is only available from host side API’s.
stem.store[index] .loadSlot (slot, data, _=None) [cpp] [python] [NET] [LabVIEW]

This command reads the slot in the given store into the byte buffer. The length will never be more than the max
buffer size given, but may be less if the slot contents were shorter than max buffer length.

stem.store[index] .unloadSlot (slot) [cpp] [python] [NET] [LabVIEW]

Enable/Disable Slot

This command enables the reflex file in the given store and slot. This command is accessible from the reflex
language.

stem.store[index] .slotEnable(slot) [cpp] [python] [NET] [LabVIEW]

This command disables the reflex file in the given store and slot. This command is accessible from the reflex
language.

stem.store[index] .slotDisable(slot) [cpp] [python] [NET] [LabVIEW]

Slot Capacity

This command gets the maximum capacity of the given slot for the store. This command is accessible from the
reflex language.

stem.store[index] .slotCapacity(slot) [cpp] [python] [NET] [LabVIEW]

1.5. MTM Products 133

BrainStem Reference Manual, Release 2.11.1

Slot Size

This command gets the current size of the data in the given slot for the store. This can be the size in bytes of
the reflex byte code file, or the data size for a bulk capture.

stem.store[index] .slotSize (slot) [cpp] [python] [NET] [LabVIEW]

Digital

API Documentation: [cpp] [python] [.NET] [LabVIEW]

BrainStem modules may have the ability to read, write or manipulate a digital pin. Digital /0O capabilities will
be dictated by the module hardware being used. Module specifics that include the quantity of digital entities
and details for their capacities will be described in that module’s datasheet.

Set/Get Configurations

Gets or Sets the digital pin configuration. Some digital entities may be single purpose functionality or can
be configured for multiple behaviors depending on the hardware. Digital entities that are capable of different
operating configurations can be explicitly set to operate in a desired configuration mode when possible. Defaults
for most digital entities are typically as inputs, but will vary by module hardware.

stem.digital [index] .setConfiguration (mode) [cpp] [python] [NET] [LabVIEW]
stem.digital [index] .getConfiguration (mode) [cpp] [python] [NET] [LabVIEW]

The mode parameter is an integer that correlates to the following:

Digital Input Output HighZ RCServo Signal
DIO O Yes Yes Yes . .
DIO 1 Yes Yes Yes . .
DIO 2 Yes Yes Yes . .
DIO3 Yes Yes Yes

Set/Get State

Gets or Sets the digital I/O Value. For gets the digital input state will be reported in a boolean fashion. Voltage
threshold tolerance details for the target module will be described in the datasheet. For sets the digital output
state will be asserted logic high or logic low. Voltage threshold details for the target module will be described
in the datasheet.

stem.digital [index] .setState(level) [cpp] [python] [NET] [LabVIEW]

stem.digital [index] .getState (level) [cpp] [python] [NET] [LabVIEW]

134 Chapter 1. Devices

BrainStem Reference Manual, Release 2.11.1

If a digital pin is configured in Hi-Z mode its internal circuitry has been disconnected to create a high impedance.
There are no functions that can act on this configuration

Value Configuration

0 Input with Pullup

1 Output

4 Hi Impedance (Hi-2)
5 Input with Pull Down

Analog

API Documentation: [cpp] [python] [[NET] [LabVIEW]

BrainStem modules may have the ability to read an analog voltage (ADC) and convert this into a discrete
digitized value or output a voltage value based on a desired discrete value (DAC). Analog voltage capabilities
will be dictated by the module hardware being used. Module specifics that include the quantity of analog entities
and details for their capacities will be described in that module’s datasheet.

Set/Get Range

The MTM-DAQ-2 has sixteen (16) analog inputs (ADC) and two (2) analog outputs (DAC) all controlled by the
analog entity. Each analog is controllable via software and is independently current-limited for both source and
sink currents. The analog inputs are connected to a 16-bit ADC, and return a voltage value in microvolts. The
full ranges are in the table below.

Analog Input Input Output Output
0-13 (+/-) (+/-) (+/-) (+/-) (+/-) . . .
10.24V 5.12V 2.56V 1.28V 0.64V
14-15 . . . (+/-) (+/-) . . .
1.28V 0.64V
16-17 5 (+/-) (+/-) (+/-)

10.24V 4.096V 2.048V

stem.analog[index] .setRange (mode) [cpp] [python] [NET] [LabVIEW]

stem.analog[index] .getRange (mode) [cpp] [python] [NET] [LabVIEW]

1.5. MTM Products 135

BrainStem Reference Manual, Release 2.11.1

Get/Set Enable [16, 17]

These outputs default to having their outputs disabled, so setEnable(1) must be called before their voltage will
be present on their respective pins.

stem.analog[index].setEnable (mode) [cpp] [python] [NET] [LabVIEW]

stem.analog[index] .setEnable (mode) [cpp] [python] [NET] [LabVIEW]

Get Voltage/Value

A BrainStem’s A2D reading will always return a 16 bit value. If the module hardware does not have full 16 bit
wide analog to digital conversion capabilities, the measurement will get propagated up to 16 bits wide.

For example, if a 12-bit A2D engine exists in the target module’s hardware, the reading will get promoted in the
firmware layer by shifting up 4 bits to fill out the 16 bit value (OxOFFF =: OXOFFF << 4 = 0xFFFO) in the module’s
firmware. This approach allows more portable API code to be generated independent of the target hardware.

setValue and setVoltage is only applicapble for Analog[16, 17]:

stem.analog[index] .setValue () [cpp] [python] [NET] [LabVIEW]
stem.analog[index] .getValue () [cpp] [python] [NET] [LabVIEW]
stem.analog[index] .setVoltage (microvolts) [cpp] [python] [NET] [LabVIEW]

stem.analog[index] .getVoltage () [cpp] [python] [NET] [LabVIEN]

12C

API Documentation: [cpp] [python] [.NET] [LabVIEW]

BrainStem modules may have the ability to read, write data on up to 2 12C bus’s

Read/Write Data

BrainStem modules may have the ability to read, write data on up to 2 I12C bus’s. The MTM-DAQ-2 includes
access to a single 12C bus operating at a set 1Mbit/s rate.

Note: The 1Mbit/s bus, while user-accessible, is also used for BrainStem network communication so there
may be other, non-user-initiated traffic when other BrainStem modules are linked.

stem.i2c[index] .read (address, length) [cpp] [python] [NET] [LabVIEW]
stem.i2c[index] .write (address, length) [cpp] [python] [NET] [LabVIEW]

The maximum data size for individual read and write operations on an 12C bus through the BrainStem APl is
20 bytes. Sending more than 20 bytes of information must be done as an iterated sequence.

136 Chapter 1. Devices

BrainStem Reference Manual, Release 2.11.1

Pullup

Each 12C bus also includes 330Q2 pull-up resistors on the SDA and SCL lines, disabled by default. When using
the MTM-DAQ-2 in a linked system (communicating over the 1Mbit/s bus), only a single set of pull-ups along
the bus should be enabled in order for the 12C bus to work properly (if more than one set is enabled, the lines
cannot be pulled low for communication). Similarly, when using a single MTM device to communicate with an
external device over the 12C bus, either the internal pull-ups can be enabled, or external hardware pull-ups

added.

stem.i2c[index] .setPullup (bEnable) [cpp] [python] [NET] [LabVIEW]

Complete list of Supported Entities and Functions

Entity Class

Entity Option Variable(s) Notes

digital[0-1]

i2c[0]

analog[0-15]

analog[16-17]

store[0-1]

system][0]

setConfiguration
getConfiguration
setState
getState
write

read
getVoltage
getValue
setRange
getRange
setVoltage
getVoltage
setValue
getValue
setRange
getRange
setEnable
getEnable
getSlotState
loadSlot
unloadSlot
slotEnable

slotDisable
slotCapacity
slotSize
save

reset
setLED
getLED
setBootSlot
getBootSlot

continues on next page

1.5. MTM Products

137

BrainStem Reference Manual, Release 2.11.1

Table 7 - continued from previous page
Entity Class Entity Option Variable(s) Notes

getinputVoltage
getVersion
getModuleBaseAddress
getModuleSoftwareOffset
setModuleSoftwareOffset
getModuleHardwareOffset
setHBInterval
getHBInterval
getRouterAddressSetting
getModule
getSerialNumber
setRouter

getRouter

getModel

routeToMe

138 Chapter 1. Devices

BrainStem Reference Manual, Release 2.11.1

1.5.3 MTM-PM-1

The MTM-PM-1, part of Acroname’s Manufacturing Test Module (MTM) system, is a modular power supply
designed for powering devices during manufacturing or R&D testing. The MTM-PM-1 is a one-channel soft-
ware controlled, voltage and current limiting power supply. While it can provide stable, consistent and robust
power to a wide range of devices, it is optimized for devices using LiPo or similar batteries; in particular, it
excels at powering devices needing stable power under large transient loads, such as cellular radios (GSM,
UMTS, LTE, CDMA, etc.). Accurate voltage, temperature and current measurements can be made through
the powerful and cross platform BrainStem API.

To get up to speed with the MTM Power Module and quickly learn about its functionality follow the quick start
guide. Have a look at the basic example or dive into the Programming interface of the MTM Power Module for
a more in depth view.

1.5. MTM Products 139

BrainStem Reference Manual, Release 2.11.1

Quick Start Guide

1. Download The Development Kit

+ Download the BrainStem Development Kit (BDK)'# for your particular operating system and architecture.

+ Download HubTool'® for your particular operating system and architecture.

2. Connect to Device

« Utilize the MTM Power Module by either connecting to the:
— Onboard USB connection
— Card edge USB input

— Through other MTM modules on the local BrainStem bus.

3. Run System

* Open HubTool

» On the bottom right side of the application select the MTM Power Module device.

Note: Linux users will need run the script labeled “udev.sh” located in the “BrainStem_linux_Driverless” folder
before they will be able communicate with a BrainStem device.

Congratulations! You are now ready to start exploring the capabilities of the MTM Relay. For more information
please take a look at our Getting Started Guide

Basic Example

C++

#include <iostream>
#include "BrainStem2/BrainStem—all.h"

int main (int argc, const char * argv[]) {

//Create an instance of a MTM-PM-1 module.
aMTMPM1 mtm;

//Connect to the hardware.

err = mtm.discoverAndConnect (1linkType, serialNumber, modelNumber)
if (err != aErrNone) {
printf ("Error %d encountered connecting to BrainStem module\n", err);

return 1;

} else { printf ("Connected to BrainStem module.\n"); }

(continues on next page)

14 https://acroname.com/api
15 https://acroname.com/hubtool

140 Chapter 1. Devices

https://acroname.com/api
https://acroname.com/hubtool

BrainStem Reference Manual, Release 2.11.1

(continued from previous page)

//Basic initialization (Get LEDs turned off).

mtm.system.setLED (0) ;

//Ready for testing
//Enable LED
mtm.system.setLED (1) ;

//Turn LED off
mtm.system.setLED (0) ;

//Disconnect
mtm.disconnect () ;
I3
Python

~

L

import brainstem

#for easy access to error constants
from brainstem.result import Result
import time

import sys

Create an instance of a MTM-PM-1 module.
mtm = brainstem.stem.MTMPM1 () ;

Locate and connect to the first object you find on MTM

result = hub.mtm.discoverAndConnect (1inkType,
if result != Result.NO_ERROR:

print ("Error
else:

print ("Connected to BrainStem module.\n")

2d encountered connecting to BrainStem Module.\n" %

serialNumber, modelNumber)

)

result)

#Basic initialization (Get everything turned off).

mtm.system.setLED (0)

##Ready for testing
##Enable LED
mtm.system.setLED (1)

##Finished with testing.
##Turn off LED
mtm.system.setLED (0)

Disconnect from device.
mtm.disconnect () ;

print ("Disconnected from BrainStem module.

\n")

1.5. MTM Products

14

BrainStem Reference Manual, Release 2.11.1

Indicators and Connections

LEDs

The MTM-PM-1 board has a number of LED indicators to assist with MTM system development, debugging,
and monitoring. These LEDs are shown in the diagrams below.

User LED
Heartbeat -
T veeTEE——S—",

Power
Watchdog —

RAILO Status _——
USB Status _—

Programming Interface

The MTM-PM-1 is capable of many features. These features are organized into groups called entities. Through
these entities we can access the vast features of the MTM-PM-1.

A complete list of all entities and functions can be found in the Module Entities page.

Software Control

A BrainStem link can be established that will give the user access to the resources available on the MTM-
PM-1. The module can then be controlled via a host running BrainStem APIs or operated independently by
running locally embedded, user-defined programs based on Acroname’s BrainStem Reflex language in the
RTOS. A BrainStem link to the MTM-PM-1 can be established via one of three (3) interfaces: the onboard USB
connection, the card-edge USB connection, or through another MTM module using the BrainStemprotocol
(more on this interface below). For the USB connection options, once the MTM-PM-1 is attached to a host
machine, a user can connect to it via software API:

[stem .discoverAndConnect (1linkType, serialNumber) }

The MTM-PM-1 can also work within a network of other Brainstem modules, such as in a test fixture, to give
access to the capabilities of all networked modules. On the MTM platform, networked modules communicate
using the Brainstem protocol, which is transmitted over 12C. Each MTM-PM-1 is uniquely addressable via
hardware or software to avoid communication conflicts on the 12C bus.

142 Chapter 1. Devices

BrainStem Reference Manual, Release 2.11.1

Upstream USB Connectivity Options

The MTM-PM-1 supports upstream USB connections (to communicate to a host PC) via the mini-B connector,
or through pins B14 and B15 of the PCle edge connector. The module defaults to using the edge connector
and will switch to the miniB connector if 5V is present on Vbus at the mini-B connector.

MTM-PM-1 Module Entities
Digital

API Documentation: [cpp] [python] [.NET] [LabVIEW]

BrainStem modules may have the ability to read, write or manipulate a digital pin. Digital I/O capabilities will
be dictated by the module hardware being used. Module specifics that include the quantity of digital entities
and details for their capacities will be described in that module’s datasheet.

Set/Get Configurations

Gets or Sets the digital pin configuration. Some digital entities may be single purpose functionality or can
be configured for multiple behaviors depending on the hardware. Digital entities that are capable of different
operating configurations can be explicitly set to operate in a desired configuration mode when possible. Defaults
for most digital entities are typically as inputs, but will vary by module hardware.

stem.digital [index] .setConfiguration (mode) [cpp] [python] [NET] [LabVIEW]
stem.digital[index] .getConfiguration (mode) [cpp] [python] [NET] [LabVIEW]

The mode parameter is an integer that correlates to the following:

Value Configuration

0 Input

1 Output

4 Hi Impedance (Hi-Z)
5 Input with Pull Down

Set/Get State

Gets or Sets the digital I/O Value. For gets the digital input state will be reported in a boolean fashion. Voltage
threshold tolerance details for the target module will be described in the datasheet. For sets the digital output
state will be asserted logic high or logic low. Voltage threshold details for the target module will be described
in the datasheet.

stem.digital[index] .setState(level) [cpp] [python] [NET] [LabVIEW]
stem.digital[index] .getState(level) [cpp] [python] [NET] [LabVIEW]

If a digital pin is configured in Hi-Z mode its internal circuitry has been disconnected to create a high impedance.
There are no functions that can act on this configuration

1.5. MTM Products 143

BrainStem Reference Manual, Release 2.11.1

Digital Input Output HighZ RCServo Signal

DIO 0 Yes Yes Yes
DIO 1 Yes Yes Yes

12C

API Documentation: [cpp] [python] [.NET] [LabVIEW]

BrainStem modules may have the ability to read, write data on up to 2 12C bus’s

Read/Write Data

BrainStem modules may have the ability to read, write data on up to 2 12C bus’s. The MTM-PM-1 includes
access to a single 12C bus operating at a set 1Mbit/s rate.

Note: The 1Mbit/s bus, while user-accessible, is also used for BrainStem network communication so there
may be other, non-user-initiated traffic when other BrainStem modules are linked.

stem.i2c[index] .read(address, length) [cpp] [python] [NET] [LabVIEW]
stem.i2c[index] .write (address, length) [cpp] [python] [NET] [LabVIEW]

The maximum data size for individual read and write operations on an 12C bus through the BrainStem APl is
20 bytes. Sending more than 20 bytes of information must be done as an iterated sequence.

Pullup

Each 12C bus also includes 330Q pull-up resistors on the SDA and SCL lines, disabled by default. When using
the MTM-PM-1 in a linked system (communicating over the 1Mbit/s bus), only a single set of pull-ups along
the bus should be enabled in order for the 12C bus to work properly (if more than one set is enabled, the lines
cannot be pulled low for communication). Similarly, when using a single MTM device to communicate with an
external device over the 12C bus, either the internal pull-ups can be enabled, or external hardware pull-ups
added.

stem.i2c[index] .setPullup (bEnable) [cpp] [python] [NET] [LabVIEW]

144 Chapter 1. Devices

BrainStem Reference Manual, Release 2.11.1

Rail

API Documentation: [cpp] [python] [.NET] [LabVIEW]

The Rail entity provides power control to connected devices on some modules. Check the module datasheet
to determine if the module has this capability.

the Rail entity controls power provided to downstream devices, it has the ability to enable and disable power,
can read voltage on the rail, and provides current consumption information on some modules. There are ad-
ditional capabilities that certain modules provide which enhance basic power delivery through Kelvin sensing,
or by bringing online separate power management functionality.

Certain modules may provide more than one power rail. These are independently controlled and can be ac-
cessed via the entity index.

Rails on the MTM-PM-1 module are powerful (no pun intended); they allow other devices and peripherals
to consume power from the MTM-PM-1 module in a precisely controlled fashion. Two (2) different rails are
available for use: a software-adjustable voltage rail (rail), and input voltage pass-through rail (rail1). These
rails are accessed through an array of BrainStem rail class entities. The MTM-PM-1 module implements a
subset of the BrainStem rail class for each of these rails.

Enable

All three rails can be switched on or off through using the API

stem.rail[index] .setEnable (state) [cpp] [python] [NET] [LabVIEW]

Rail Operational Mode

RAIL can be configured to use two different regulation stages: linear (LDO) or switch-mode power supply
(SMPS)
stem.rail [index] .setOperationalMode (mode) [cpp] [python] [NET] [LabVIEW]

stem.rail[index] .getOperationalMode (mode) [cpp] [python] [NET] [LabVIEN]

Mode Operational Mode Description

0 railOperationalModeAuto (default)
1 railOperationalModeLinear
3 railOperationalModeSwitcherLinear

Rail Operational State

Auto configuration chooses the switch-mode power supply if an input voltage greater than 7.25V is applied,
and the linear regulator otherwise. The APl can be used to read the actual operational state

stem.rail[index] .setOperationalState (state) [cpp] [python] [NET] [LabVIEW]

stem.rail[index] .getOperationalState () [cpp] [python] [NET] [LabVIEW]

1.5. MTM Products 145

BrainStem Reference Manual, Release 2.11.1

Operational State Field Description

0 Initializing (railOperationalState_Initializing) rail[0-1]
1 Enabled (railOperationalState_Enabled) rail[0-1]
2 Fault (railOperationalState_Fault) rail[0-1]
3-15 Reserved .

8-15 Hardware Configuration (railOperationalState HardwareConfiguration) rail0
16-17 Reserved .

18 Overcurrent Fault “OC” (railOperationStateOverCurrentFault) railt
19-20 Reserved .

21 Overtemperature Fault “OT” (railOperationalStateOverTemperatureFault) rail0

22-31 Reserved

Rail Temperature

The printed circuit board (PCB) temperature can be monitored at the 5.0V rail (RAIL) linear regulation stage.
Reading this value is possible through the API

stem.rail [index] .getTemperature () [cpp] [python] [NET] [LabVIEW]

Temperature monitoring is also used internally to prevent the power regulation stage from overheating and
self-preserving the power stage. If an overtemperature condition occurs, then the MTM-IO-Serial module will
disable the linear regulator until safe operating temperatures are reached.

Rail Voltage Setting

RAIL always uses linear regulators to generate an adjustable voltage. They can be set or read using the API

stem.rail[index] .setVoltage (microvolts) [cpp] [python] [NET] [LabVIEW]

Rail and Rail1 Current Limits

The current limit for each rail can be configured in software from 0A to 3A
stem.rail[index] .setCurrentLimit (microamps) [cpp] [python] [NET] [LabVIEW]
stem.rail[index] .getCurrentLimit (microamps) [cpp] [python] [NET] [LabVIEW]

Note that the behavior following an overcurrent event differs between rails:
- rail will simply reduce the output voltage to drive the specified current. No fault bits will be set in software.
- rail1 will be turned off by the hardware if the output current goes above the set limit. The rail1 Fault and
Overcurrent Fault bits will be set and must be cleared before re-enabling the rail.

146 Chapter 1. Devices

BrainStem Reference Manual, Release 2.11.1

Rail and Rail1 Current and Voltage

The APl command to measure what the current and voltages are
stem.rail [index] .getCurrent (microamps) [cpp] [python] [NET] [LabVIEW]

stem.rail[index] .getVoltage (microamps) [cpp] [python] [NET] [LabVIEW]

Rail Kelvin Sensing

Remote sensing can be applied to compensate for line loss in a system often found in high transient load ap-
plications. The MTM-PM-1 provides a “3-wire” interface to provide feedback to the MTM-PM-1 power supply
to adjust appropriately and dynamically

stem.rail[index] .setKelvinSensingMode (bEnable) [cpp] [python] [NET] [LabVIEW]
stem.rail [index] .getKelvinSensingMode (bEnable) [cpp] [python] [NET] [LabVIEW]
bEnable parameter is an integer that correlates to the following:
* 0: kelvinSensingOff
* 1: kelvinSensingOn

Determine whether kelvin sensing is enabled or disabled. Kelvin sensing can be disabled if the power stage
incurs a fault on the rail power stage.

stem.rail[index] .getKelvinSensingState (state) [cpp] [python] [NET] [LabVIEW]

Store

API Documentation: [cpp] [python] [.NET] [LabVIEW]

Every BrainStem module has one or more stores. Stores are the BrainStem equivalent of a filesystem. Stores
are broken up into a number of slots, each of which can be thought of as a file. A Store generally represents a
specific type of storage. Flash or internal, RAM, or SD if the BrainStem includes an SD slot. The most common
usage of slots and stores is for the storage of reflex code that will run on the BrainStem module. Additionally
Bulk capture of Analog data can write to a slot within a store. Slots within the internal store can be set up as
boot slots by setting the appropriate slot number in the system configuration. See the :doc:” System <system>"
entity for more information about setting a boot slot.

The number and type of stores is Model specific. Details about the number of slots per store, and available
stores can be found in the data sheets for specific models.

There are a number of commands for manipulating stores, which are detailed below. Many of the store com-
mands are only accessible from host API’s and Ul applications, however commands relating to enabling reflex
files in slots are accessible from the reflex language.

Every BrainStem module includes several Store entities and onboard memory slots to load Reflex files (for
details on Reflex, see Refiex Language Reference). One Refiex file can be stored per slot.

The MTM-PM-1 has store slots [0-1].

Store Slot Storage Type

0 RAM
1 Internal

1.5. MTM Products 147

BrainStem Reference Manual, Release 2.11.1

Get Slot State

For slots which hold reflexes, this read only command returns whether the slot is currently enabled or not. 1 is
enabled 0 is disabled. This command can be called from a reflex.

stem.store[index] .getSlotState(slot) [cpp] [python] [NET] [LabVIEW]

Load/Unload Slot

This command writes a data buffer into a slot for the given store. It is only available from host side API’s.
stem.store[index] .loadSlot (slot, data, _=None) [cpp] [python] [NET] [LabVIEW]

This command reads the slot in the given store into the byte buffer. The length will never be more than the max
buffer size given, but may be less if the slot contents were shorter than max buffer length.

stem.store[index] .unloadSlot (slot) [cpp] [python] [NET] [LabVIEW]

Enable/Disable Slot

This command enables the reflex file in the given store and slot. This command is accessible from the reflex
language.

stem.store[index] .slotEnable(slot) [cpp] [python] [NET] [LabVIEW]

This command disables the reflex file in the given store and slot. This command is accessible from the reflex
language.

stem.store[index] .slotDisable(slot) [cpp] [python] [NET] [LabVIEW]

Slot Capacity

This command gets the maximum capacity of the given slot for the store. This command is accessible from the
reflex language.

stem.store[index] .slotCapacity (slot) [cpp] [python] [NET] [LabVIEW]

Slot Size

This command gets the current size of the data in the given slot for the store. This can be the size in bytes of
the reflex byte code file, or the data size for a bulk capture.

stem.store[index] .slotSize (slot) [cpp] [python] [NET] [LabVIEW]

148 Chapter 1. Devices

BrainStem Reference Manual, Release 2.11.1

System

API Documentation: [cpp] [python] [.NET] [LabVIEW]

Every BrainStem module includes a single system entity. The system entity allows the retrieval and manipula-
tion of configuration settings like the module address and input voltage, control over the user LED, as well as
other functionality.

Serial Number

Every MTM-PM-1 is assigned a unique serial number at the factory. This facilitates an arbitrary number of
MTM-PM-1 devices attached to a host computer. The following method call can retrieve the unique serial
number for each device.

stem.system.getSerialNumber (serialNumber) [cpp] [python] [NET] [LabVIEW]

Module Default Base Address

BrainStems are designed to be able to form a reactive, extensible network. All BrainStem modules come with
a default network base address for identification on the BrainStem network bus. The default module base
address for MTM-PM-1 is factory-set as 6, and can be accessed with.

stem.system.getModule (module) [cpp] [python] [NET] [LabVIEW]

Saved Settings

Some entities can be configured and saved to non-volatile memory. This allows a user to modify the startup
and operational behavior for the MTM-PM-1 away from the factory default settings. Saving system settings
preserves the settings as the new default. Most changes to system settings require a save and reboot before
taking effect. For example, upstream and downstream USB Boost settings will not take effect unless a system
save operation is completed, followed by a reset or power cycle. Use the following command to save changes
to system settings before reboot:

stem.system.save () [cpp] [python] [NET] [LabVIEW]

1.5. MTM Products 149

BrainStem Reference Manual, Release 2.11.1

Saved Configurations

Module Software Offset 12C Rate
Router Address 12C Pullup State
Heartbeat Rate Boot Slot

Reset

Reset the system.

stem.system.reset () [cpp] [python] [NET] [LabVIEW]

Get/Set LED

Set the system LED state. Most modules have a blue system LED. Refer to the module datasheet for details
on the system LED location and color.

stem.system.getLED (value) [cpp] [python] [NET] [LabVIEW]

stem.system.setLED (value) [cpp] [python] [NET] [LabVIEW]

Get/Set Boot Slot

Get the store slot which is mapped when the module boots. Set a store slot to be mapped when the module
boots.

The boot slot will be mapped after the module boots from powers up, receives a reset signal on its reset input,
or is issued a software reset command. Set the slot to 255 to disable mapping on boot.

stem.system.getBootSlot () [cpp] [python] [NET] [LabVIEW]

stem.system.setBootSlot (value) [cpp] [python] [NET] [LabVIEW]

Get Input Voltage

Get the module’s input voltage.

stem.system.getInputVoltage () [cpp] [python] [NET] [LabVIEW]

150 Chapter 1. Devices

BrainStem Reference Manual, Release 2.11.1

Get Version
Get the modules firmware version number.

The version number is packed into the return value. Ultility functions in the Version module can unpack the
major, minor and patch numbers from the version number which looks like M.m.p.

stem.system.getVersion () [cpp] [python] [NET] [LabVIEW]

Get/Set Module Software Offset

Set the software address offset.

The module software offset is added to the base module address, and potentially a hardware offset to determine
the final calculated address the module uses on the BrainStem network. You must save and reset the module
for this change to become effective.

stem.system.getModuleSoftwareOffset () [cpp] [python] [NET] [LabVIEW]

stem.system.setModuleSoftwareOffset (value) [cpp] [python] [NET] [LabVIEW]

Get/Set HB Interval

Get the delay between heartbeat packets. Set the delay between heartbeat packets.

For link modules, these heartbeat are sent to the host. For non-link modules, these heartbeats are sent to the
router address. Interval values are in 25.6 millisecond increments. Increments valid values are 1-255; default
is 10 (256 milliseconds).

stem.system.getHBInterval () [cpp] [python] [NET] [LabVIEW]

stem.system.setHBInterval (value) [cpp] [python] [NET] [LabVIEW]

Get/Set Router

Get the router address the module uses to communicate with the host. Set the router address the module uses
to communicate with the host.

stem.system.getRouter () [cpp] [python] [NET] [LabVIEW]

stem.system.setRouter (value) [cpp] [python] [NET] [LabVIEW]

1.5. MTM Products 151

BrainStem Reference Manual, Release 2.11.1

Get Router Address Setting

Get the router address setting saved in the module. This setting may be different from the effective router if the
router has been set and saved but no reset has been made.

stem.system.getRouterAddressSetting () [cpp] [python] [NET] [LabVIEW]

Get Module

Get the address the module uses on the BrainStem network.

stem.system.getModule () [cpp] [python] [NET] [LabVIEW]

Get Model

Get the module’s model enumeration.

A subset of the possible model enumerations is defined in aProtocolDefs.h under “BrainStem model codes”.
Other codes are be used by Acroname for proprietary module types.

stem.system.getModel () [cpp] [python] [NET] [LabVIEW]

Route to Me

Enables/Disables the route to me function.

This function allows for easy networking of BrainStem modules. Enabling (1) this function will send an 12C
General Call to all devices on the network and request that they change their router address to the of the calling
device. Disabling (0) will cause all devices on the BrainStem network to revert to their default address.

stem.system.routeToMe (value) [cpp] [python] [NET] [LabVIEW]

Temperature

API Documentation: [cpp] [python] [.NET] [LabVIEW]

Certain modules have a temperature measurement available. The temperature entity gives access to these
measurements. Check your module datasheet to see if your module has a temperature entity.

152 Chapter 1. Devices

BrainStem Reference Manual, Release 2.11.1

System Temperature

The temperature of the MTM-PM-1 can be measured with:

stem.temperature[0] .getTemperature (uC) [cpp] [python] [NET] [LabVIEW]

where temperature is in micro-degress Celcius.

Complete list of Supported Entities and Functions

Entity Class Entity Option Variable(s) Notes

digital[0-1] setConfiguration
getConfiguration
setState
getState

i2c[0] write
read

rail[0-1] setEnable
setCurrentLimit
getCurrent
getCurrentLimit
getVoltage

rail[0] setVoltage
setOperationalMode
getOperationalMode
getOperationalState
getTemperature
getKelvinSensingEnable
setKelvinSensingEnable
getKelvinSensingState

store[0-1] getSlotState
loadSlot
unloadSlot

slotEnable
slotDisable
slotCapacity
slotSize
system[0] save
reset
setLED
getLED
setSleep
setBootSlot
getBootSlot
getlnputVoltage
getVersion
getModuleBaseAddress

continues on next page

1.5. MTM Products 153

BrainStem Reference Manual, Release 2.11.1

Table 8 - continued from previous page
Entity Class Entity Option Variable(s) Notes

getModuleSoftwareOffset

setModuleSoftwareOffset

getModuleHardwareOffset

setHBInterval

getHBInterval

getRouterAddressSetting

getModule

getSerialNumber

setRouter

getRouter

getModel

routeToMe
temperature[0] getTemperature

1.5.4 MTM-Load-1

The MTM-Load-1, part of Acroname’s Manufacturing Test Module (MTM) system, is a single-channel
software-controlled electronic load for automated functional testing in production or validation test environ-
ments.

With it’s ultra-small footprint, MTM-Load-1 is the load you need for lean, miniaturized production testing. MTM-
Load-1 is ideal for load-testing of battery chargers, amplifiers, USB power outputs or motor driver circuits.

Each MTM-Load-1 can dissipate a DC load of 50W continuous power up to 30V or 10A and features constant-
current operation. Multiple MTM-Load-1 modules can be used in parallel for higher demand load applications.

To get up to speed with the MTM Load and quickly learn about its functionality follow the quick start guide.
Have a look at the basic example or dive into the Programming interface of the MTM Power Module for a more
in depth view.

154 Chapter 1. Devices

BrainStem Reference Manual, Release 2.11.1

Quick Start Guide

1. Download The Development Kit

+ Download the BrainStem Development Kit (BDK)'€ for your particular operating system and architecture.

+ Download HubTool'” for your particular operating system and architecture.

2. Connect to Device

« Utilize the MTM Load by either connecting to the:
— Onboard USB connection
— Card edge USB input

— Through other MTM modules on the local BrainStem bus.

3. Run System

* Open HubTool
» On the bottom right side of the application select the MTM Load device.

Note: Linux users will need run the script labeled “udev.sh” located in the “BrainStem_linux_Driverless” folder
before they will be able communicate with a BrainStem device.

Congratulations! You are now ready to start exploring the capabilities of the MTM Load. For more information
please take a look at our Getting Started Guide

Basic Example

C++

#include <iostream>
#include "BrainStem2/BrainStem—all.h"

int main (int argc, const char * argv[]) {

//Create an instance of a MTM-LOAD module.
aMTMLoad mtm;

//Connect to the hardware.

err = mtm.discoverAndConnect (1linkType, serialNumber, modelNumber)
if (err != aErrNone) {
printf ("Error %d encountered connecting to BrainStem module\n", err);

return 1;

} else { printf ("Connected to BrainStem module.\n"); }

(continues on next page)

16 https://acroname.com/api
17 https://acroname.com/hubtool

1.5. MTM Products 155

https://acroname.com/api
https://acroname.com/hubtool

BrainStem Reference Manual, Release 2.11.1

(continued from previous page)

//Basic initialization (Get LEDs turned off).
mtm.system.setLED (0) ;

//Ready for testing
//Enable LED
mtm.system.setLED (1) ;

//Turn LED off
mtm.system.setLED (0) ;

//Disconnect
mtm.disconnect () ;
I3
L J
Python

import brainstem

#for easy access to error constants
from brainstem.result import Result
import time

import sys

Create an instance of a MTM-LOAD module.
mtm = brainstem.stem.MTMLOADI () ;

Locate and connect to the first object you find on MTM
result = hub.mtm.discoverAndConnect (1linkType, serialNumber, modelNumber)
if result != Result.NO_ERROR:
print ("Error 2d encountered connecting to BrainStem Module.\n" % result)
else:
print ("Connected to BrainStem module.\n")

#Basic initialization (Get everything turned off).
mtm.system.setLED (0)

##Ready for testing
##Enable LED
mtm.system.setLED (1)

##Finished with testing.
##Turn off LED
mtm.system.setLED (0)

Disconnect from device.

mtm.disconnect () ;

print ("Disconnected from BrainStem module. \n")
-

156 Chapter 1. Devices

BrainStem Reference Manual, Release 2.11.1

Indicators and Connections

LEDs

The MTM-Load-1 board has five LED indicators to assist with MTM system development, debugging, and
monitoring. These LEDs are shown in the diagrams below.

USB Status
User LED
Heartbeat
Power

Watchdog

DETAILA
SCALE 5:1

Programming Interface

The MTM-Load is capable of many features. These features are organized into groups called entities. Through
these entities we can access the vast features of the MTM-Load.

A complete list of all entities and functions can be found in the Module Entities page.

Software Control

A BrainStem link can be established that will give the user access to the resources available on the MTM-
Load. The module can then be controlled via a host running BrainStem APIs or operated independently by
running locally embedded, user-defined programs based on Acroname’s BrainStem Reflex language in the
RTOS. A BrainStem link to the MTM-Load can be established via one of three (3) interfaces: the onboard USB
connection, the card-edge USB connection, or through another MTM module using the BrainStemprotocol
(more on this interface below). For the USB connection options, once the MTM-Load is attached to a host
machine, a user can connect to it via software API:

[stem.discoverAndConnect(linkType, serialNumber, modelNumber)

The MTM-Load can also work within a network of other Brainstem modules, such as in a test fixture, to give
access to the capabilities of all networked modules. On the MTM platform, networked modules communicate
using the Brainstem protocol, which is transmitted over 12C. Each MTM-Load is uniquely addressable via
hardware or software to avoid communication conflicts on the 12C bus.

1.5. MTM Products 157

BrainStem Reference Manual, Release 2.11.1

Upstream USB Connectivity Options

The MTM-Load supports upstream USB connections (to communicate to a host PC) via the mini-B connector,
or through pins B14 and B15 of the PCle edge connector. The module defaults to using the edge connector
and will switch to the miniB connector if 5V is present on Vbus at the mini-B connector.

MTM-LOAD-1 Module Entities
Digital

API Documentation: [cpp] [python] [.NET] [LabVIEW]

BrainStem modules may have the ability to read, write or manipulate a digital pin. Digital I/O capabilities will
be dictated by the module hardware being used. Module specifics that include the quantity of digital entities
and details for their capacities will be described in that module’s datasheet.

Set/Get Configurations

Gets or Sets the digital pin configuration. Some digital entities may be single purpose functionality or can
be configured for multiple behaviors depending on the hardware. Digital entities that are capable of different
operating configurations can be explicitly set to operate in a desired configuration mode when possible. Defaults
for most digital entities are typically as inputs, but will vary by module hardware.

stem.digital [index] .setConfiguration (mode) [cpp] [python] [NET] [LabVIEW]
stem.digital[index] .getConfiguration (mode) [cpp] [python] [NET] [LabVIEW]

The mode parameter is an integer that correlates to the following:

Value Configuration

0 Input
1 Output
4 HiZ

Set/Get State

Gets or Sets the digital I/O Value. For gets the digital input state will be reported in a boolean fashion. Voltage
threshold tolerance details for the target module will be described in the datasheet. For sets the digital output
state will be asserted logic high or logic low. Voltage threshold details for the target module will be described
in the datasheet.

stem.digital [index] .setState (level) [cpp] [python] [NET] [LabVIEW]
stem.digital[index] .getState (level) [cpp] [python] [NET] [LabVIEW]

If a digital pin is configured in Hi-Z mode its internal circuitry has been disconnected to create a high impedance.
There are no functions that can act on this configuration

158 Chapter 1. Devices

BrainStem Reference Manual, Release 2.11.1

Digital Input Output Hi-Z RCServo Signal

DIO0 Yes Yes Yes . .

DIO1 Yes Yes Yes . .

DIO2 Yes Yes Yes . .

DIO3 Yes Yes Yes . .
12C

API Documentation: [cpp] [python] [.NET] [LabVIEW]

BrainStem modules may have the ability to read, write data on up to 2 12C bus’s

Read/Write Data

BrainStem modules may have the ability to read, write data on up to 2 12C bus’s. The MTM-LOAD includes
access to a single 12C bus operating at a set 1Mbit/s rate.

Note: The 1Mbit/s bus, while user-accessible, is also used for BrainStem network communication so there
may be other, non-user-initiated traffic when other BrainStem modules are linked.

stem.i2c[index] .read(address, length) [cpp] [python] [NET] [LabVIEW]
stem.i2c[index] .write (address, length) [cpp] [python] [NET] [LabVIEW]

The maximum data size for individual read and write operations on an 12C bus through the BrainStem APl is
20 bytes. Sending more than 20 bytes of information must be done as an iterated sequence.

Pullup

Each 12C bus also includes 330Q2 pull-up resistors on the SDA and SCL lines, disabled by default. When using
the MTM-LOAD in a linked system (communicating over the 1Mbit/s bus), only a single set of pull-ups along
the bus should be enabled in order for the 12C bus to work properly (if more than one set is enabled, the lines
cannot be pulled low for communication). Similarly, when using a single MTM device to communicate with an
external device over the 12C bus, either the internal pull-ups can be enabled, or external hardware pull-ups
added.

stem.i2c[index] .setPullup (bEnable) [cpp] [python] [NET] [LabVIEW]

1.5. MTM Products 159

BrainStem Reference Manual, Release 2.11.1

Rail

API Documentation: [cpp] [python] [.NET] [LabVIEW]

The Rail entity provides power control to connected devices on some modules. Check the module datasheet
to determine if the module has this capability.

the Rail entity controls power provided to downstream devices, it has the ability to enable and disable power,
can read voltage on the rail, and provides current consumption information on some modules. There are ad-
ditional capabilities that certain modules provide which enhance basic power delivery through Kelvin sensing,
or by bringing online separate power management functionality.

Certain modules may provide more than one power rail. These are independently controlled and can be ac-
cessed via the entity index.

Rail 0 on the MTM-Load-1 module is powerful (no pun intended); it allows other devices and peripherals to pro-
vide power to the MTM-Load-1 module where it is precisely loaded. The rail is a software-adjustable constant
current sink. This rail is accessed through a BrainStem rail class entity. The MTM-Load-1 module implements
a subset of the BrainStem rail class for the load rail.

Enable

All three rails can be switched on or off through using the API

stem.rail [index] .setEnable (state) [cpp] [python] [NET] [LabVIEW]

Rail Operational Mode

RAIL can be configured to use two different regulation stages: linear (LDO) or switch-mode power supply
(SMPS)

stem.rail[index] .setOperationalMode (mode) [cpp] [python] [NET] [LabVIEW]

stem.rail [index] .getOperationalMode (mode) [cpp] [python] [NET] [LabVIEW]

Value Define

Hardware Mode - Bits [0-3]

0 railOperationalModeAuto_Value

1 railOperationalModeLinear_Value

2 railOperationalModeSwitcher_Value

3 railOperationalModeSwitcherLinear_Value
Operational Mode - Bits [4-7]

0 railOperationalConstantCurrent_Value

160 Chapter 1. Devices

BrainStem Reference Manual, Release 2.11.1

Operational State

Auto configuration chooses the switch-mode power supply if an input voltage greater than 7.25V is applied,
and the linear regulator otherwise. The APl can be used to read the actual operational state

stem.rail[index] .getOperationalState (state) [cpp] [python] [NET] [LabVIEW]

Bits RAIL Operational State Description

0 Initializing (railOperationalState_ Initializing)
1 Enabled (railOperationalState_Enabled)
2 Fault (railOperationalState Fault)

3-15 Reserved

8-15 Hardware Configuration (railOperationalState_HardwareConfiguration)
16 Overvoltage Fault “OV” (railOperationalStateOverVoltageFault)

17 Undervoltage Fault “UV” (railOperationalStateUnderVoltageFault)

18 Overcurrent Fault “OC” (railOperationalStateOverCurrentFault)

19 Overpower Fault “OP” (railOperationalStateOverPowerFault)

20 Reverse Polarity Fault “RV”(railOperationalStateReversePolarityFault)

21 Overtemperature Fault “OT” (railOperationalStateOverTemperatureFault)

22-23 Reserved
24-31 Operating Mode (railOperationalStateOperatingMode)

Rail Temperature

The printed circuit board (PCB) temperature can be monitored at the 5.0V rail (RAILO) linear regulation stage.
Reading this value is possible through the API

stem.rail [index] .getTemperature () [cpp] [python] [NET] [LabVIEW]

Temperature monitoring is also used internally to prevent the power regulation stage from overheating and
self-preserving the power stage. If an overtemperature condition occurs, then the MTM-IO-Serial module will
disable the linear regulator until safe operating temperatures are reached.

Rail Current Setting

The current setpoint for the rail can be configured in software from OA to 10A. Setting values outside the allow-
able range will return an error (aErrRange 13). The rail will attempt to maintain the specified current through
all input voltage variations once the rail is enabled with the operational mode set to constant current.

stem.rail[index] .setCurrentSetpoint (microvolts) [cpp] [python] [NET] [LabVIEW]

stem.rail[index] .getCurrentSetpoint (microvolts) [cpp] [python] [NET] [LabVIEW]

1.5. MTM Products 161

BrainStem Reference Manual, Release 2.11.1

Rail Current Limit

The current limit for the rail can be configured in software from 0A to 12A. The rail will operate normally if the
measured current is below the specified current. If the limit is crossed, the load will automatically disable the
rail and set the corresponding overcurrent fault bit in the Operational State variable. If the current limit is below
the current setpoint the rail will still disable itself when the current limit is exceeded

stem.rail[index] .setCurrentlLimit (microamps) [cpp] [python] [NET] [LabVIEW]

Rail Voltage Min/Max Setting

The voltage limits for the rail can be configured in software from -0.7V to 35V. The rail will operate normally be-
tween the minimum and maximum voltage limits. If the upper or lower limit is crossed, the load will automatically
disable the rail and set the corresponding over/under voltage fault bit in the Operational State variable.

stem.rail[index] .setVoltageMinlLimit (microvolts) [cpp] [python] [NET] [LabVIEW]

stem.rail[index] .setVoltageMaxLimit (microvolts) [cpp] [python] [NET] [LabVIEW]

Rail Power Limit Setting

The power limit for the rail can be configured in software from OW to 150W. The rail will operate normally below
this limit. If the limit is crossed, the load will automatically disable the rail and set the corresponding overpower
fault bit in the Operational State variable.

stem.rail[index] .setPowerLimit (milliwatts) [cpp] [python] [NET] [LabVIEW]

Store

API Documentation: [cpp] [python] [.NET] [LabVIEW]

Every BrainStem module has one or more stores. Stores are the BrainStem equivalent of a filesystem. Stores
are broken up into a number of slots, each of which can be thought of as a file. A Store generally represents a
specific type of storage. Flash or internal, RAM, or SD if the BrainStem includes an SD slot. The most common
usage of slots and stores is for the storage of reflex code that will run on the BrainStem module. Additionally
Bulk capture of Analog data can write to a slot within a store. Slots within the internal store can be set up as
boot slots by setting the appropriate slot number in the system configuration. See the :doc:” System <system>"
entity for more information about setting a boot slot.

The number and type of stores is Model specific. Details about the number of slots per store, and available
stores can be found in the data sheets for specific models.

There are a number of commands for manipulating stores, which are detailed below. Many of the store com-
mands are only accessible from host API’s and Ul applications, however commands relating to enabling reflex
files in slots are accessible from the reflex language.

Every BrainStem module includes several Store entities and onboard memory slots to load Reflex files (for
details on Reflex, see Reflex Language Reference). One Refiex file can be stored per slot.

The MTM-LOAD has store slots [0-1].

162 Chapter 1. Devices

BrainStem Reference Manual, Release 2.11.1

Store Slot Storage Type

0 RAM
1 Internal

Get Slot State

For slots which hold reflexes, this read only command returns whether the slot is currently enabled or not. 1 is
enabled 0 is disabled. This command can be called from a reflex.

stem.store[index] .getSlotState(slot) [cpp] [python] [NET] [LabVIEW]

Load/Unload Slot

This command writes a data buffer into a slot for the given store. It is only available from host side API’s.
stem.store[index] .loadSlot (slot, data, _=None) [cpp] [python] [NET] [LabVIEW]

This command reads the slot in the given store into the byte buffer. The length will never be more than the max
buffer size given, but may be less if the slot contents were shorter than max buffer length.

stem.store[index] .unloadSlot (slot) [cpp] [python] [NET] [LabVIEW]

Enable/Disable Slot

This command enables the reflex file in the given store and slot. This command is accessible from the reflex
language.

stem.store[index] .slotEnable(slot) [cpp] [python] [NET] [LabVIEW]

This command disables the reflex file in the given store and slot. This command is accessible from the reflex
language.

stem.store[index] .slotDisable(slot) [cpp] [python] [NET] [LabVIEW]

Slot Capacity

This command gets the maximum capacity of the given slot for the store. This command is accessible from the
reflex language.

stem.store[index] .slotCapacity(slot) [cpp] [python] [NET] [LabVIEW]

1.5. MTM Products 163

BrainStem Reference Manual, Release 2.11.1

Slot Size

This command gets the current size of the data in the given slot for the store. This can be the size in bytes of
the reflex byte code file, or the data size for a bulk capture.

stem.store[index] .slotSize (slot) [cpp] [python] [NET] [LabVIEW]

System

API Documentation: [cpp] [python] [.NET] [LabVIEW]

Every BrainStem module includes a single system entity. The system entity allows the retrieval and manipula-
tion of configuration settings like the module address and input voltage, control over the user LED, as well as
other functionality.

Serial Number

Every MTM-LOAD is assigned a unique serial number at the factory. This facilitates an arbitrary number of
MTM-LOAD devices attached to a host computer. The following method call can retrieve the unique serial
number for each device.

stem.system.getSerialNumber (serialNumber) [cpp] [python] [NET] [LabVIEW]

Module Default Base Address

BrainStems are designed to be able to form a reactive, extensible network. All BrainStem modules come with
a default network base address for identification on the BrainStem network bus. The default module base
address for MTM-LOAD is factory-set as 6, and can be accessed with.

stem.system.getModule (module) [cpp] [python] [NET] [LabVIEW]

Saved Settings

Some entities can be configured and saved to non-volatile memory. This allows a user to modify the startup
and operational behavior for the MTM-LOAD away from the factory default settings. Saving system settings
preserves the settings as the new default. Most changes to system settings require a save and reboot before
taking effect. For example, upstream and downstream USB Boost settings will not take effect unless a system
save operation is completed, followed by a reset or power cycle. Use the following command to save changes
to system settings before reboot:

164 Chapter 1. Devices

BrainStem Reference Manual, Release 2.11.1

stem.system.save () [cpp] [python] [NET] [LabVIEW]

Saved Configurations

Module Software Offset 12C Rate
Router Address 12C Pullup State
Heartbeat Rate Boot Slot

Reset

Reset the system.

stem.system.reset () [cpp] [python] [NET] [LabVIEW]

Get/Set LED

Set the system LED state. Most modules have a blue system LED. Refer to the module datasheet for details
on the system LED location and color.

stem.system.getLED (value) [cpp] [python] [NET] [LabVIEW]

stem.system.setLED (value) [cpp] [python] [NET] [LabVIEW]

Get/Set Boot Slot
Get the store slot which is mapped when the module boots. Set a store slot to be mapped when the module

boots.

The boot slot will be mapped after the module boots from powers up, receives a reset signal on its reset input,
or is issued a software reset command. Set the slot to 255 to disable mapping on boot.

stem.system.getBootSlot () [cpp] [python] [NET] [LabVIEW]

stem.system.setBootSlot (value) [cpp] [python] [NET] [LabVIEW]

1.5. MTM Products 165

BrainStem Reference Manual, Release 2.11.1

Get Input Voltage

Get the module’s input voltage.

stem.system.getInputVoltage () [cpp] [python] [NET] [LabVIEW]

Get Version

Get the modules firmware version number.

The version number is packed into the return value. Ultility functions in the Version module can unpack the
major, minor and patch numbers from the version number which looks like M.m.p.

stem.system.getVersion () [cpp] [python] [NET] [LabVIEW]

Get/Set Module Software Offset

Set the software address offset.

The module software offset is added to the base module address, and potentially a hardware offset to determine
the final calculated address the module uses on the BrainStem network. You must save and reset the module
for this change to become effective.

stem.system.getModuleSoftwareOffset () [cpp] [python] [NET] [LabVIEW]

stem.system.setModuleSoftwareOffset (value) [cpp] [python] [NET] [LabVIEW]

Get/Set HB Interval

Get the delay between heartbeat packets. Set the delay between heartbeat packets.

For link modules, these heartbeat are sent to the host. For non-link modules, these heartbeats are sent to the
router address. Interval values are in 25.6 millisecond increments. Increments valid values are 1-255; default
is 10 (256 milliseconds).

stem.system.getHBInterval () [cpp] [python] [NET] [LabVIEW]

stem.system.setHBInterval (value) [cpp] [python] [NET] [LabVIEW]

166 Chapter 1. Devices

BrainStem Reference Manual, Release 2.11.1

Get/Set Router

Get the router address the module uses to communicate with the host. Set the router address the module uses
to communicate with the host.

stem.system.getRouter () [cpp] [python] [NET] [LabVIEW]

stem.system.setRouter (value) [cpp] [python] [NET] [LabVIEW]

Get Router Address Setting

Get the router address setting saved in the module. This setting may be different from the effective router if the
router has been set and saved but no reset has been made.

stem.system.getRouterAddressSetting () [cpp] [python] [NET] [LabVIEW]

Get Module

Get the address the module uses on the BrainStem network.

stem.system.getModule () [cpp] [python] [NET] [LabVIEW]

Get Model

Get the module’s model enumeration.

A subset of the possible model enumerations is defined in aProtocolDefs.h under “BrainStem model codes”.
Other codes are be used by Acroname for proprietary module types.

stem.system.getModel () [cpp] [python] [NET] [LabVIEW]

Route to Me

Enables/Disables the route to me function.

This function allows for easy networking of BrainStem modules. Enabling (1) this function will send an 12C
General Call to all devices on the network and request that they change their router address to the of the calling
device. Disabling (0) will cause all devices on the BrainStem network to revert to their default address.

stem.system.routeToMe (value) [cpp] [python] [NET] [LabVIEW]

1.5. MTM Products 167

BrainStem Reference Manual, Release 2.11.1

Complete list of Supported Entities and Functions

Entity Class

Entity Option Variable(s) Notes

digital[0-3]

i2c[0]

rail[0]

store[0-1]

system[0]

setConfiguration
getConfiguration
setState

getState

write

read

setPullup
setCurrent
getCurrent
getCurrentSetpoint
setCurrentLimit
getCurrentLimit
getTemperature
setEnable
getEnable
setVoltage
getOperationalState
getVoltageSetpoint
setVoltageMinLimit
getVoltageMinLimit
setVoltageMaxLimit
getVoltageMaxLimit

Disabled by default.

setPower

getPower
getPowerSetpoint
setPowerLimit
getPowerLimit
setResistance
getResistance
getResistanceSetpoint
setOperationalMode
getOperationalMode
getOperationalState
clearFaults
getSlotState
loadSlot

unloadSlot
slotEnable
slotDisable
slotCapacity
slotSize

Reset

save

setLED

getLED

setBootSlot
getBootSlot

continues on next page

168

Chapter 1. Devices

BrainStem Reference Manual, Release 2.11.1

Table 9 - continued from previous page
Entity Class Entity Option Variable(s) Notes

getinputVoltage
getVersion
getModuleBaseAddress
getModuleSoftwareOffset
setModuleSoftwareOffset
setHBInterval
getHBlInterval
getRouterAddressSetting
getModule
getSerialNumber
setRouter

getRouter

getModel

1.5.5 MTM-IO-Serial

As part of Acroname’s MTM series, the MTM-IO-Serial module is a key component to manufacturing test
systems for electronic devices using a standard USB 2.0 interface, serial UARTs and one or more interface
voltages. The MTM-10-Serial module features a software controlled USB hub (USB 2.0 high-speed) with four
controllable channels. Each channel has switched data and 500mA current-limited power lines. With dedicated
USB downstream and upstream channels, MTM-10-Serial modules can scale with simple PCB daisy-chaining;
only one cable needed to connect up to 100 devices.

The module also provides four high speed serial UART interfaces which require no specialized driver or kernel
extensions.

To get up to speed with the MTM |IO-Serial and quickly learn about its functionality follow the quick start guide.
Have a look at the basic example or dive into the Programming interface of the MTM Power Module for a more
in depth view.

1.5. MTM Products 169

BrainStem Reference Manual, Release 2.11.1

Quick Start Guide

1. Download The Development Kit

+ Download the BrainStem Development Kit (BDK)'€ for your particular operating system and architecture.

+ Download HubTool'® for your particular operating system and architecture.

2. Connect to Device

« Utilize the MTM |0 Serial by either connecting to the:
— Onboard USB connection
— Card edge USB input

— Through other MTM modules on the local BrainStem bus.

3. Run System

* Open HubTool
» On the bottom right side of the application select the MTM 10 Serial device.

Note: Linux users will need run the script labeled “udev.sh” located in the “BrainStem_linux_Driverless” folder
before they will be able communicate with a BrainStem device.

Congratulations! You are now ready to start exploring the capabilities of the MTM 10 Serial. For more infor-
mation please take a look at our Getting Started Guide

Basic Example

C++

#include <iostream>
#include "BrainStem2/BrainStem—all.h"

int main (int argc, const char * argv[]) {

//Create an instance of a MTM-IO-SERIAL module.
aMTMIOSerial mtm;

//Connect to the hardware.

err = mtm.discoverAndConnect (1linkType, serialNumber, modelNumber)
if (err != aErrNone) {
printf ("Error %d encountered connecting to BrainStem module\n", err);

return 1;

} else { printf ("Connected to BrainStem module.\n"); }

(continues on next page)

18 https://acroname.com/api
19 https:/acroname.com/hubtool

170 Chapter 1. Devices

https://acroname.com/api
https://acroname.com/hubtool

BrainStem Reference Manual, Release 2.11.1

(continued from previous page)

//Basic initialization (Get LEDs turned off).
mtm.system.setLED (0) ;

//Ready for testing
//Enable LED
mtm.system.setLED (1) ;

//Turn LED off
mtm.system.setLED (0) ;

//Disconnect
mtm.disconnect () ;
I3
=
Python

g
import brainstem

#for easy access to error constants
from brainstem.result import Result
import time

import sys

Create an instance of a MTM-IO-SERIAL module.
mtm = brainstem.stem.MTMIOSerial ();

Locate and connect to the first object you find on MTM
result = hub.mtm.discoverAndConnect (1linkType, serialNumber, modelNumber)
if result != Result.NO_ERROR:
print ("Error 2d encountered connecting to BrainStem Module.\n" % result)
else:
print ("Connected to BrainStem module.\n")

#Basic initialization (Get everything turned off).
mtm.system.setLED (0)

##Ready for testing
##Enable LED
mtm.system.setLED (1)

##Finished with testing.
##Turn off LED
mtm.system.setLED (0)

Disconnect from device.

mtm.disconnect () ;

print ("Disconnected from BrainStem module. \n")
-

1.5. MTM Products 171

BrainStem Reference Manual, Release 2.11.1

Indicators and Connections

LEDs

The MTM-IO-Serial board has a number of LED indicators to assist with MTM system development, debugging,
and monitoring. These LEDs are shown in the diagrams below.

USB Status

Hub Status
USB Channel 5 Boost

B Channel 5 Statu
USB Channel 3 Boost
USB Channel 3 Status
USB Channel 2 Boost
USB Channel 2 Status
USB Channel 4 Boost
USB Channel 4 Status
USB Channel 1 Boost
USB Channel 1 Status
USB Channel 0 Boost
USB Channel 0 Status
USB Downstream Boost
USB Downstream Status

Y

OO
et 5!.:;;; E'p'_g_g;‘!..- "
i i A)

Re WL o assaal e
. EREY oo

Programming Interface

The MTM-IO-Serial is capable of many features. These features are organized into groups called entities.
Through these entities we can access the vast features of the MTM-1O-Serial.

A complete list of all entities and functions can be found in the Module Entities page.

Software Control

A BrainStem link can be established that will give the user access to the resources available on the MTM-
IO-Serial. The module can then be controlled via a host running BrainStem APIs or operated independently
by running locally embedded, user-defined programs based on Acroname’s BrainStem Reflex language in the
RTOS. A BrainStem link to the MTM-10O-Serial can be established via one of three (3) interfaces: the onboard
USB connection, the card-edge USB connection, or through another MTM module using the BrainStemprotocol
(more on this interface below). For the USB connection options, once the MTM-IO-Serial is attached to a host
machine, a user can connect to it via software API:

172 Chapter 1. Devices

BrainStem Reference Manual, Release 2.11.1

[stem .discoverAndConnect (1linkType, serialNumber)

The MTM-IO-Serial can also work within a network of other Brainstem modules, such as in a test fixture, to give
access to the capabilities of all networked modules. On the MTM platform, networked modules communicate
using the Brainstem protocol, which is transmitted over 12C. Each MTM-1O-Serial is uniquely addressable via
hardware or software to avoid communication conflicts on the 12C bus.

Upstream USB Connectivity Options

The MTM-IO-Serial supports upstream USB connections (to communicate to a host PC) via the mini-B connec-
tor, or through pins B14 and B15 of the PCle edge connector. The module defaults to using the edge connector
and will switch to the miniB connector if 5V is present on Vbus at the mini-B connector.

MTM-IO-SERIAL Module Entities
Digital

API Documentation: [cpp] [python] [[NET] [LabVIEW]

BrainStem modules may have the ability to read, write or manipulate a digital pin. Digital 1/0 capabilities will
be dictated by the module hardware being used. Module specifics that include the quantity of digital entities
and details for their capacities will be described in that module’s datasheet.

Set/Get Configurations

Gets or Sets the digital pin configuration. Some digital entities may be single purpose functionality or can
be configured for multiple behaviors depending on the hardware. Digital entities that are capable of different
operating configurations can be explicitly set to operate in a desired configuration mode when possible. Defaults
for most digital entities are typically as inputs, but will vary by module hardware.

stem.digital[index] .setConfiguration (mode) [cpp] [python] [NET] [LabVIEW]

stem.digital [index] .getConfiguration (mode) [cpp] [python] [NET] [LabVIEW]

The mode parameter is an integer that correlates to the following:

1.5. MTM Products 173

BrainStem Reference Manual, Release 2.11.1

Value Configuration

Input

Output

RC Servo Input
RC Servo Output
Signal Output
Signal Input

NOoO wNh = O

Set/Get State

Gets or Sets the digital I/O Value. For gets the digital input state will be reported in a boolean fashion. Voltage
threshold tolerance details for the target module will be described in the datasheet. For sets the digital output
state will be asserted logic high or logic low. Voltage threshold details for the target module will be described
in the datasheet.

stem.digital [index] .setState (level) [cpp] [python] [NET] [LabVIEW]

stem.digital [index] .getState (level) [cpp] [python] [NET] [LabVIEW]

RCServo

API Documentation: [cpp] [python] [.NET] [LabVIEW]

The RCServo entity provides a pulsed signal based on the RC servo standard. This consist of a period lasting
20ms with a high pulse between 1-2ms. The time high corresponds to a specific position determined by the
servo being used. For example if you are using a 90 degree servo a 1.5ms pulse will correspond to the 45
degrees. 1ms and 2ms pulses will correspond to 0 and 90 degree positions respectively.

The RCServo entity is an overload to the Digital Entity and therefor requires proper configuration of the Digital
entity before the RCServo entity can be enabled.

The MTM-1O-SERIAL board is equipped with 4 RC servo inputs and 4 RC servo outputs. The RC Servo entity
is an overload of the Digital Entity and thus requires proper configuration before this entity can be enabled.

With the RC servo entity, digital output pins generate pulsed signal based on the RC Servo standard consist-
ing of a period lasting 20ms and high pulse time between 1-2ms. The high time corresponds to a specific
position determined by the specific servo being used. RC servo inputs, measure this high time and return the
corresponding position for a servo.

174 Chapter 1. Devices

BrainStem Reference Manual, Release 2.11.1

Set Configuration

The table below aligns the Digital entities and the RCServo entities for configurations

digital[0] servo[0] Pin0 RCServo Input
digital[1] servo[1] Pin1 RCServo Input
digital[2] servo[2] Pin2 RCServo Input
digital[3] servo[3] Pin3 RCServo Input
digital[4] servo[4] Pin4 RCServo Output
digital[5] servo[5] Pin5 RCServo Output
digital[6] servo[6] Pin6 RCServo Output
digital[7] servo[7] Pin7 RCServo Output

stem.digital [index] .getConfiguration(digitalConfigurationRCServoInput/Output)
[cpp] [python] [NET] [LabVIEW]

Get/Set Enable

This functions gets/sets the RCServo function for a given pin (pending, it has been properly configured in the
digital entity). At a firmware level this enables/disables the timers.

stem.servo[index] .setEnable (bEnable) [cpp] [python] [NET] [LabVIEW]

stem.servo[index] .getEnable () [cpp] [python] [NET] [LabVIEW]

Get/Set Position

This functions gets/sets the RCServo position. For outputs this will return the currently set position; however,
for inputs it will return the value seen at the pin pending the pulse is valid. If the pulse or period are invalid a
zero will be returned along with the error code aErrRange. Only index 4-7.

stem.servo[index] .setPosition(position) [cpp] [python] [NET] [LabVIEW]

stem.servo[index] .getPosition () [cpp] [python] [NET] [LabVIEW]

Get/Set Reverse

This functions gets/sets the reverse (invert) option in the RCServo Class. Only index 4-7.
stem.servo[index] .setReverse (reverse) [cpp] [python] [NET] [LabVIEW]

stem.servo[index] .getReverse () [cpp] [python] [NET] [LabVIEW]

1.5. MTM Products 175

BrainStem Reference Manual, Release 2.11.1

12C

API Documentation: [cpp] [python] [.NET] [LabVIEW]

BrainStem modules may have the ability to read, write data on up to 2 12C bus’s

Read/Write Data

BrainStem modules may have the ability to read, write data on up to 2 12C bus’s. The MTM-IO-SERIAL includes
access to a single 12C bus operating at a set 1Mbit/s rate.

Note: The 1Mbit/s bus, while user-accessible, is also used for BrainStem network communication so there
may be other, non-user-initiated traffic when other BrainStem modules are linked.

stem.i2c[index] .read(address, length) [cpp] [python] [NET] [LabVIEW]
stem.i2c[index] .write (address, length) [cpp] [python] [NET] [LabVIEW]

The maximum data size for individual read and write operations on an 12C bus through the BrainStem APl is
20 bytes. Sending more than 20 bytes of information must be done as an iterated sequence.

Pullup

Each I2C bus also includes 330Q pull-up resistors on the SDA and SCL lines, disabled by default. When using
the MTM-IO-SERIAL in a linked system (communicating over the 1Mbit/s bus), only a single set of pull-ups
along the bus should be enabled in order for the 12C bus to work properly (if more than one set is enabled, the
lines cannot be pulled low for communication). Similarly, when using a single MTM device to communicate with
an external device over the 12C bus, either the internal pull-ups can be enabled, or external hardware pull-ups
added.

stem.i2c[index] .setPullup (bEnable) [cpp] [python] [NET] [LabVIEW]

usB

API Documentation: [cpp] [python] [.NET] [LabVIEW]

The USB Entity provides the software control interface for USB related features. This entity is supported by
BrainStem products which have programmatically controlled USB features.

The usb entity manages the software-controllable downstream USB 2.0 channels of the MTM-10-Serial (there
are also two non-software-controllable USB channels on the module, one through the edge connector and the
other through the onboard type-A connector, which are always on), as well as the upstream USB connection
mode. All downstream USB ports are configured as SDP (Standard Data Port).

176 Chapter 1. Devices

BrainStem Reference Manual, Release 2.11.1

Downstream

Each of the four software-controllable USB channels (ports 0-3) can be individually manipulated using the usb
entity. The APl individually controls port power, data, or both together

Power

stem.usb.setPowerkEnable (port) [cpp] [python] [NET] [LabVIEW]

stem.usb.setPowerDisable (port) [cpp] [python] [NET] [LabVIEW]

Data

stem.usb.setDataEnable (port) [cpp] [python] [NET] [LabVIEW]

stem.usb.setDataDisable (port) [cpp] [python] [NET] [LabVIEW]

Port

stem.usb.setPortEnable (port) [cpp] [python] [NET] [LabVIEW]

stem.usb.setPortDisable (port) [cpp] [python] [NET] [LabVIEW]

Upstream Mode

The MTM-IO-Serial has two (2) upstream USB connection options: through the edge connector or via the
mini-B connector on the board itself. The upstream mode can be set or read using the usb entity

stem.usb.setUpstreamMode (mode) [cpp] [python] [NET] [LabVIEW]
stem.usb.getUpstreamMode (mode) [cpp] [python] [NET] [LabVIEW]

The mode parameter is an integer that correlates to the following:

Mode Result

0 Edge Connector
1 Mini-B Connector
2 Auto

Auto configuration chooses the upstream connection based on the presence or absence of VBUS power at the
mini-B connector; if VBUS is present, the mini-B connector is used, otherwise the edge connector is used.

1.5. MTM Products 177

BrainStem Reference Manual, Release 2.11.1

Upstream State

Gets the upstream switch state for the USB upstream ports. Returns none if no ports are plugged in, port O if
the mode is set correctly and a cable is plugged into port 0, and port 1 if the mode is set correctly and a cable
is plugged into port 1

stem.usb.getUpstreamState () [cpp] [python] [NET] [LabVIEW]

Hub Mode

In addition to targeting individual downstream USB ports, a bit-mapped hub state interface is also available.
This interface allows the reading or setting of all USB downstream ports in one functional call

stem.usb.setHubMode (mode) [cpp] [python] [NET] [LabVIEW]

stem.usb.getHubMode (mode) [cpp] [python] [NET] [LabVIEW]

Bit Hub Operational Mode Result Bitwise Description

USB Channel 0 USB Hi Speed Data Enabled
USB Channel 0 USB VBUS Enabled
USB Channel 1 USB Hi Speed Data Enabled
USB Channel 1 USB VBUS Enabled
USB Channel 2 USB Hi Speed Data Enabled
USB Channel 2 USB VBUS Enabled
USB Channel 3 USB Hi Speed Data Enabled
USB Channel 3 USB VBUS Enabled
:31 Reserved

ONOO TS~ WN 2O

Port State

Each downstream port reports information regarding its operating state represented in bit-packed results from
stem.usb.getPortState (mode) [cpp] [python] [NET] [LabVIEW]

where channel can be [0-3], and the value status is 32-bit word, defined as the following:

Bit Port State Result Bitwise Description

0 USB VBUS Enabled
1 USB2 Data Enabled
2:18 Reserved

19 USB Error Flag

20 USB2 Boost Enabled
21:31 Reserved

178 Chapter 1. Devices

BrainStem Reference Manual, Release 2.11.1

Hi-Speed Data

Enables or Disables Hi Speed data only for given downstream channel. This call enables or disables the usb
data (+) and data (-) lines for the given channel.

stem.usb.setHiSpeedDataEnable (port) [cpp] [python] [NET] [LabVIEW]

stem.usb.setHiSpeedDataDisable (port) [cpp] [python] [NET] [LabVIEW]

Hub and Port Error Status

Errors can be cleared on each individual channel (0, 1, 2 or 3) by calling the following method:
stem.usb.getPortError (channel) [cpp] [python] [NET] [LabVIEW]

Details about the hub error status 32-bit word are as follows:

Port State Result Bitwise Description

0 USB VBUS Enabled
1 USB2 Data Enabled
2:18 Reserved

19 USB Error Flag

20 USB2 Boost Enabled
21:31 Reserved

To clear a Port error status

stem.usb.clearPortErrorStatus (channel) [cpp] [python] [NET] [LabVIEW]

UART

UART entities provide a mechanism to enable and disable UART data lines. All the UARTSs that are passed
down from the MTM-IO-Serial module can be turned on/off through software control. If a voltage is applied
that is higher than the current rail voltage setpoint, each UART transmit line is current limited to 20mA sinking.
Therefore, only a small amount of current will flow into the device, preventing any damage to the MTM-IO-
SERIAL module’s hardware

Get/Set Enable

This command enables the reflex file in the given store and slot. This command is accessible from the reflex
language.

stem.uart [index] .setEnable (bEnable) [cpp] [python] [NET] [LabVIEW]

stem.uart [index] .getEnable () [cpp] [python] [NET] [LabVIEW]

1.5. MTM Products 179

BrainStem Reference Manual, Release 2.11.1

=
. \—| LAATIEE] PO [il——— -
Mo ST i o Dawvica
- e
AT T - S

=
. -ﬂ
Wy e e]]
= el
pra

Rail

API Documentation: [cpp] [python] [[NET] [LabVIEW]

The Rail entity provides power control to connected devices on some modules. Check the module datasheet
to determine if the module has this capability.

the Rail entity controls power provided to downstream devices, it has the ability to enable and disable power,
can read voltage on the rail, and provides current consumption information on some modules. There are ad-
ditional capabilities that certain modules provide which enhance basic power delivery through Kelvin sensing,
or by bringing online separate power management functionality.

Certain modules may provide more than one power rail. These are independently controlled and can be ac-
cessed via the entity index.

Rails allow other devices and peripherals to consume power from the MTM-IO-SERIAL module in a controlled
fashion. Three (3) different rails are available for use in a variety of application: a single fixed 5.0V rail (RAILO)
and 2 adjustable voltage rails (RAIL1, RAIL2). These rails are accessed through an array of BrainStem rail
class entities. The MTM-10-SERIAL module implements a subset of the BrainStem rail class for each of these
rails. The implemented rail entity options for each entity index are summarized below.

Enable

All three rails can be switched on or off through using the API

stem.rail[index] .setEnable (state) [cpp] [python] [NET] [LabVIEW]

Rail0 Operational Mode

RAILO can be configured to use two different regulation stages: linear (LDO) or switch-mode power supply
(SMPS)

stem.rail[index] .setOperationalMode (mode) [cpp] [python] [NET] [LabVIEN]

stem.rail[index] .getOperationalMode (mode) [cpp] [python] [NET] [LabVIEN]

Mode Result

0 Auto
1 Linear
2 Switcher

180 Chapter 1. Devices

BrainStem Reference Manual, Release 2.11.1

Operational State

Auto configuration chooses the switch-mode power supply if an input voltage greater than 7.25V is applied,
and the linear regulator otherwise. The APl can be used to read the actual operational state

stem.rail[index] .getOperationalState (state) [cpp] [python] [NET] [LabVIEW]

State Result

0 Linear
1 Switcher

Rail0 Temperature

The printed circuit board (PCB) temperature can be monitored at the 5.0V rail (RAILO) linear regulation stage.
Reading this value is possible through the API

stem.rail [index] .getTemperature () [cpp] [python] [NET] [LabVIEW]

Temperature monitoring is also used internally to prevent the power regulation stage from overheating and
self-preserving the power stage. If an overtemperature condition occurs, then the MTM-IO-Serial module will
disable the linear regulator until safe operating temperatures are reached.

Rail1 and Rail2 Voltage Setting

RAIL1 and RAIL2 always use linear regulators to generate their adjustable voltages. They can be set or read
using the API

stem.rail[index] .setVoltageSetpoint (microvolts) [cpp] [python] [NET] [LabVIEW]

stem.rail[index] .getVoltageSetpoint (microvolts) [cpp] [python] [NET] [LabVIEW]

Rail Voltage

Getting the rail voltage from any of the rails can be used by implementing

stem.rail[index] .getVoltage (microvolts) [cpp] [python] [NET] [LabVIEW]

Rail Protection

Each rail is current limited in hardware to 100mA and will operate in constant-current mode upon reaching
100mA. Extended operation in constant-current mode is discouraged and may result in thermal shutdown of
the rail.

Each rail is automatically disconnected when an overvoltage condition is detected and automatically recon-
nected if the overvoltage condition ceases. Overvoltage detection is implemented in hardware and based on
the rail’s voltage setpoint.

1.5. MTM Products 181

BrainStem Reference Manual, Release 2.11.1

Signal

API Documentation: [cpp] [python] [.NET] [LabVIEW]

SignalClass. Interface to digital pins configured to produce square wave signals. This class is designed to allow
for square waves at various frequencies and duty cycles. Control is defined by specifying the wave period as
(T3Time) and the active portion of the cycle as (T2Time). See the entity overview section of the reference for
more detail regarding the timing.

Signal entity to Digital entity mapping varies from device to device. Please refer to the datasheet.

The MTM-10-SERIAL board has 5 Signal Input and 4 Signal outputs. The Signal entity allows you to generate
square waves by supplying a period and a time high value. The Signal inputs can also be used as counters. The
Signal entity is an overload of the Digital entity and must first be properly configured before it can be enabled.

Set Configurations

The configurations for the signal inputs are found in the table below.

stem.digital [index] .getConfiguration(digitalConfigurationSignalInput) [cpp]
[python] [NET] [LabVIEW]

Pin Input Output Rail Hi-Z Servo Signal

DIO O Yes Yes 1 No Input Input

DIO 1 Yes Yes 1 No Input Input / Out-
DIO 2 Yes Yes 1 No Input Ipnug;[ut / Out-
DIO 3 Yes Yes 1 No Input Ipnur;[ut / Out-
DIO 4 Yes Yes 2 No Qutput IIDnupJ:ut / Out-
DIO5 Yes Yes 2 No Output - .

DIO 6 Yes Yes 2 No Output .

DIO7 Yes Yes 2 No Output .

Get/Set Enable

stem.signal[index] .setEnable (bEnable) [cpp] [python] [NET] [LabVIEW]

stem.signal[index] .getEnable () [cpp] [python] [NET] [LabVIEW]

182 Chapter 1. Devices

BrainStem Reference Manual, Release 2.11.1

Get/Set T3 Time

The T3 time defines the period of the waveform in nano seconds.
stem.signal [index] .setT3Time (period) [cpp] [python] [NET] [LabVIEW]

stem.signal[index] .getT3Time () [cpp] [python] [NET] [LabVIENW]

Get/Set T2 Time

The T2 time defines the high period of the waveform in nano seconds.
stem.signal[index] .setT2Time (timeHigh) [cpp] [python] [NET] [LabVIEW]

stem.signal[index] .getT2Time () [cpp] [python] [NET] [LabVIEN]

Get/Set Invert

Inverts the meaning of the T2 time. When inverted the T2 time will represent the time in nano seconds that the
waveform is low.

stem.signal[index] .setInvert () [cpp] [python] [NET] [LabVIEW]

stem.signal [index] .getInvert () [cpp] [python] [NET] [LabVIEN]

Store

API Documentation: [cpp] [python] [.NET] [LabVIEW]

Every BrainStem module has one or more stores. Stores are the BrainStem equivalent of a filesystem. Stores
are broken up into a number of slots, each of which can be thought of as a file. A Store generally represents a
specific type of storage. Flash or internal, RAM, or SD if the BrainStem includes an SD slot. The most common
usage of slots and stores is for the storage of reflex code that will run on the BrainStem module. Additionally
Bulk capture of Analog data can write to a slot within a store. Slots within the internal store can be set up as
boot slots by setting the appropriate slot number in the system configuration. See the :doc:” System <system>"
entity for more information about setting a boot slot.

The number and type of stores is Model specific. Details about the number of slots per store, and available
stores can be found in the data sheets for specific models.

There are a number of commands for manipulating stores, which are detailed below. Many of the store com-
mands are only accessible from host API’'s and Ul applications, however commands relating to enabling reflex
files in slots are accessible from the reflex language.

Every BrainStem module includes several Store entities and onboard memory slots to load Reflex files (for
details on Reflex, see Refiex Language Reference). One Refiex file can be stored per slot.

The MTM-IO-SERIAL has store slots [0-1].

Store Slot Storage Type

0 RAM
1 Internal

1.5. MTM Products 183

BrainStem Reference Manual, Release 2.11.1

Get Slot State

For slots which hold reflexes, this read only command returns whether the slot is currently enabled or not. 1 is
enabled 0 is disabled. This command can be called from a reflex.

stem.store[index] .getSlotState(slot) [cpp] [python] [NET] [LabVIEW]

Load/Unload Slot

This command writes a data buffer into a slot for the given store. It is only available from host side API’s.
stem.store[index] .loadSlot (slot, data, _=None) [cpp] [python] [NET] [LabVIEW]

This command reads the slot in the given store into the byte buffer. The length will never be more than the max
buffer size given, but may be less if the slot contents were shorter than max buffer length.

stem.store[index] .unloadSlot (slot) [cpp] [python] [NET] [LabVIEW]

Enable/Disable Slot

This command enables the reflex file in the given store and slot. This command is accessible from the reflex
language.

stem.store[index] .slotEnable(slot) [cpp] [python] [NET] [LabVIEW]

This command disables the reflex file in the given store and slot. This command is accessible from the reflex
language.

stem.store[index] .slotDisable(slot) [cpp] [python] [NET] [LabVIEW]

Slot Capacity

This command gets the maximum capacity of the given slot for the store. This command is accessible from the
reflex language.

stem.store[index] .slotCapacity (slot) [cpp] [python] [NET] [LabVIEW]

Slot Size

This command gets the current size of the data in the given slot for the store. This can be the size in bytes of
the reflex byte code file, or the data size for a bulk capture.

stem.store[index] .slotSize (slot) [cpp] [python] [NET] [LabVIEW]

184 Chapter 1. Devices

BrainStem Reference Manual, Release 2.11.1

System

API Documentation: [cpp] [python] [.NET] [LabVIEW]

Every BrainStem module includes a single system entity. The system entity allows the retrieval and manipula-
tion of configuration settings like the module address and input voltage, control over the user LED, as well as
other functionality.

Serial Number

Every MTM-IO-SERIAL is assigned a unique serial number at the factory. This facilitates an arbitrary number
of MTM-IO-SERIAL devices attached to a host computer. The following method call can retrieve the unique
serial number for each device.

stem.system.getSerialNumber (serialNumber) [cpp] [python] [NET] [LabVIEW]

Module Default Base Address

BrainStems are designed to be able to form a reactive, extensible network. All BrainStem modules come with
a default network base address for identification on the BrainStem network bus. The default module base
address for MTM-IO-SERIAL is factory-set as 6, and can be accessed with.

stem.system.getModule (module) [cpp] [python] [NET] [LabVIEW]

Saved Settings

Some entities can be configured and saved to non-volatile memory. This allows a user to modify the startup and
operational behavior for the MTM-IO-SERIAL away from the factory default settings. Saving system settings
preserves the settings as the new default. Most changes to system settings require a save and reboot before
taking effect. For example, upstream and downstream USB Boost settings will not take effect unless a system
save operation is completed, followed by a reset or power cycle. Use the following command to save changes
to system settings before reboot:

stem.system.save () [cpp] [python] [NET] [LabVIEW]

1.5. MTM Products 185

BrainStem Reference Manual, Release 2.11.1

Saved Configurations

Module Software Offset 12C Rate
Router Address 12C Pullup State
Heartbeat Rate Boot Slot

Reset

Reset the system.

stem.system.reset () [cpp] [python] [NET] [LabVIEW]

Get/Set LED

Set the system LED state. Most modules have a blue system LED. Refer to the module datasheet for details
on the system LED location and color.

stem.system.getLED (value) [cpp] [python] [NET] [LabVIEW]

stem.system.setLED (value) [cpp] [python] [NET] [LabVIEW]

Get/Set Boot Slot

Get the store slot which is mapped when the module boots. Set a store slot to be mapped when the module
boots.

The boot slot will be mapped after the module boots from powers up, receives a reset signal on its reset input,
or is issued a software reset command. Set the slot to 255 to disable mapping on boot.

stem.system.getBootSlot () [cpp] [python] [NET] [LabVIEW]

stem.system.setBootSlot (value) [cpp] [python] [NET] [LabVIEW]

Get Input Voltage

Get the module’s input voltage.

stem.system.getInputVoltage () [cpp] [python] [NET] [LabVIEW]

186 Chapter 1. Devices

BrainStem Reference Manual, Release 2.11.1

Get Version
Get the modules firmware version number.

The version number is packed into the return value. Ultility functions in the Version module can unpack the
major, minor and patch numbers from the version number which looks like M.m.p.

stem.system.getVersion () [cpp] [python] [NET] [LabVIEW]

Get/Set Module Software Offset

Set the software address offset.

The module software offset is added to the base module address, and potentially a hardware offset to determine
the final calculated address the module uses on the BrainStem network. You must save and reset the module
for this change to become effective.

stem.system.getModuleSoftwareOffset () [cpp] [python] [NET] [LabVIEW]

stem.system.setModuleSoftwareOffset (value) [cpp] [python] [NET] [LabVIEW]

Get/Set HB Interval

Get the delay between heartbeat packets. Set the delay between heartbeat packets.

For link modules, these heartbeat are sent to the host. For non-link modules, these heartbeats are sent to the
router address. Interval values are in 25.6 millisecond increments. Increments valid values are 1-255; default
is 10 (256 milliseconds).

stem.system.getHBInterval () [cpp] [python] [NET] [LabVIEW]

stem.system.setHBInterval (value) [cpp] [python] [NET] [LabVIEW]

Get/Set Router

Get the router address the module uses to communicate with the host. Set the router address the module uses
to communicate with the host.

stem.system.getRouter () [cpp] [python] [NET] [LabVIEW]

stem.system.setRouter (value) [cpp] [python] [NET] [LabVIEW]

1.5. MTM Products 187

BrainStem Reference Manual, Release 2.11.1

Get Router Address Setting

Get the router address setting saved in the module. This setting may be different from the effective router if the
router has been set and saved but no reset has been made.

stem.system.getRouterAddressSetting () [cpp] [python] [NET] [LabVIEW]

Get Module

Get the address the module uses on the BrainStem network.

stem.system.getModule () [cpp] [python] [NET] [LabVIEW]

Get Model

Get the module’s model enumeration.

A subset of the possible model enumerations is defined in aProtocolDefs.h under “BrainStem model codes”.
Other codes are be used by Acroname for proprietary module types.

stem.system.getModel () [cpp] [python] [NET] [LabVIEW]

Route to Me

Enables/Disables the route to me function.

This function allows for easy networking of BrainStem modules. Enabling (1) this function will send an 12C
General Call to all devices on the network and request that they change their router address to the of the calling
device. Disabling (0) will cause all devices on the BrainStem network to revert to their default address.

stem.system.routeToMe (value) [cpp] [python] [NET] [LabVIEW]

Complete list of Supported Entities and Functions

Entity Class Entity Option Variable(s) Notes

digital[0-7] setConfiguration
getConfiguration
setState
getState
rcservo[0-7] setEnable
getEnable
setPosition Index 4-7 only
getPosition

continues on next page

188 Chapter 1. Devices

BrainStem Reference Manual, Release 2.11.1

Table 10 - continued from previous page

Entity Class

Entity Option

Variable(s) Notes

i2c[0]

usb[0]

UARTI[0-3]

rail[0]

rail[1-2]

signal[0-5]

store[0-1]

setReverse
getReverse

write

read

setPortEnable
setPortDisable
setDataEnable
setDataDisable
setHiSpeedDataEna

Index 4-7 only

ble

setHiSpeedDataDisable

setPowerEnable
setPowerDisable
getPortError
clearPortErrorStatus

getSystemTemperat
setUpstreamMode
getUpstreamMode
getUpstreamState
getDownstreamData
getHubMode
setHubMode
getPortState
setEnable
getEnable
setEnable
getEnable
getTemperature
setOperationalMode
getOperationalMode
getOperationalState
getVoltage
setEnable
getEnable
setVoltageSetpoint
getVoltageSetpoint
getVoltage
setEnable
getEnable

setlnvert

getinvert

setT3Time
getT3Time
setT2Time
getT2Time
getSlotState
loadSlot

unloadSlot
slotEnable
slotDisable

ure In microcelsius

Speed

In microcelsius

In microvolts

In microvolts
In microvolts
In microvolts

continues on next page

1.5. MTM Products

189

BrainStem Reference Manual, Release 2.11.1

Table 10 - continued from previous page
Entity Class Entity Option Variable(s) Notes

slotCapacity
slotSize

system[0] save
reset
setLED
getLED
setSleep
setBootSlot
getBootSlot
getlnputVoltage
getVersion
getModuleBaseAddress
getModuleSoftwareOffset
setModuleSoftwareOffset
getModuleHardwareOffset
setHBInterval
getHBInterval
getRouterAddressSetting
getModule
getSerialNumber
setRouter
getRouter
getModel
routeToMe

port[0-3] getEnabled
setEnabled
getDataEnabled
setDataEnabled
getDataHSEnabled
setDataHSEnabled
getPowerEnabled
setPowerEnabled
getName
setName
getDataRole
getErrors

port[4] getDataRole

USBSystem [0] getUpstream
setUpstream
setDataRoleBehavior
getDataRoleBehavior

190 Chapter 1. Devices

BrainStem Reference Manual, Release 2.11.1

1.5.6 MTM-EtherStem

L]

°° si
o M-ET! oo
3% n L

E 2
www.ac e
a2 - £ coL
-
a8 g 3
G a2z .

ACR?N{:}.,‘\;"E

E o

¥

4-¥S106-1S

| caunaLvd

| Mg ied

RREIY > (DR

| o151 ou0

E

The MTM EtherStem is a BrainStem link module and part of Acroname’s Manufacturing Test Module (MTM)
system. It allows a TCP/IP based Ethernet connection to a host PC which may be used for test direction, control
and data collection. It may also be used to load reflex programs to MTM or BrainStem modules for PC-free
operation.

This module provides a TCP/IP Ethernet link to a host PC or network for test automation control and data
collection. Using this link and the BrainStem API, any host based application can interact with a device under
test, other MTM module(s), test station hardware and custom peripherals, as well as log and store data from a
test.

To get up to speed with the MTM EtherStem and quickly learn about its functionality follow the quick start guide.
Have a look at the basic example or dive into the Programming interface of the MTM Power Module for a more
in depth view.

Quick Start Guide

1. Download The Development Kit

+ Download the BrainStem Development Kit (BDK)° for your particular operating system and architecture.

+ Download HubTool?" for your particular operating system and architecture.

20 https://acroname.com/api
21 https://acroname.com/hubtool

1.5. MTM Products 191

https://acroname.com/api
https://acroname.com/hubtool

BrainStem Reference Manual, Release 2.11.1

2. Connect to Device

« Utilize the MTM EtherStem by either connecting to the:
— Onboard USB connection
— Card edge USB input

— Through other MTM modules on the local BrainStem bus.

3. Run System

* Open HubTool
 On the bottom right side of the application select the MTM EtherStem device.

Note: Linux users will need run the script labeled “udev.sh” located in the “BrainStem_linux_Driverless” folder
before they will be able communicate with a BrainStem device.

Congratulations! You are now ready to start exploring the capabilities of the MTM EtherStem. For more infor-
mation please take a look at our Getting Started Guide

Basic Example

C++

#include <iostream>
#include "BrainStem2/BrainStem—all.h"

int main (int argc, const char * argv[]) {

//Create an instance of a MTM-ETHERSTEM module.
aMTMEtherStem mtm;

//Connect to the hardware.

err = mtm.discoverAndConnect (1linkType, serialNumber, modelNumber)
if (err != aErrNone) {
printf ("Error %d encountered connecting to BrainStem module\n", err);

return 1;
} else { printf ("Connected to BrainStem module.\n"); }

//Basic initialization (Get LEDs turned off).
mtm.system.setLED (0) ;

//Ready for testing
//Enable LED
mtm.system.setLED (1) ;

//Turn LED off
mtm.system.setLED (0) ;

//Disconnect
mtm.disconnect () ;

192 Chapter 1. Devices

BrainStem Reference Manual, Release 2.11.1

Python

import brainstem

#for easy access to error constants
from brainstem.result import Result
import time

import sys

Create an instance of a MTM-ETHERSTEM module.
mtm = brainstem.stem.MTMEtherStem() ;

Locate and connect to the first object you find on MTM
result = hub.mtm.discoverAndConnect (1linkType, serialNumber, modelNumber)
if result != Result.NO_ERROR:
print ("Error %d encountered connecting to BrainStem Module.\n" $ result)
else:
print ("Connected to BrainStem module.\n")

#Basic initialization (Get everything turned off).
mtm.system.setLED (0)

##Ready for testing
##Enable LED
mtm.system.setLED (1)

##Finished with testing.
##Turn off LED
mtm.system.setLED (0)

Disconnect from device.
mtm.disconnect () ;
print ("Disconnected from BrainStem module. \n")

Indicators and Connections

LEDs

The MTM-EtherStem board has a number of LED indicators to assist with MTM system development, debug-

ging, and monitoring. These LEDs are shown in the diagrams below

User LED
Heartbeat
Logic Power
UART1T TX
UART1 RX
UARTO TX
UARTO RX
Watchdog

DETAIL A

SCALE 4:1

1.5. MTM Products

193

BrainStem Reference Manual, Release 2.11.1

Programming Interface

The MTM-USBEtherStem is capable of many features. These features are organized into groups called enti-
ties. Through these entities we can access the vast features of the MTM-USBEtherStem.

A complete list of all entities and functions can be found in the Module Entities page.

Software Control

A BrainStem link can be established that will give the user access to the resources available on the MTM-
USBEtherStem. The module can then be controlled via a host running BrainStem APls or operated indepen-
dently by running locally embedded, user-defined programs based on Acroname’s BrainStem Reflex language
in the RTOS. A BrainStem link to the MTM-USBEtherStem can be established via one of three (3) interfaces:
the onboard USB connection, the card-edge USB connection, or through another MTM module using the Brain-
Stemprotocol (more on this interface below). For the USB connection options, once the MTM-USBEtherStem
is attached to a host machine, a user can connect to it via software API:

[stem .discoverAndConnect (1linkType, serialNumber) }

The MTM-USBEtherStem can also work within a network of other Brainstem modules, such as in a test fixture,
to give access to the capabilities of all networked modules. On the MTM platform, networked modules com-
municate using the Brainstem protocol, which is transmitted over 12C. Each MTM-USBEtherStem is uniquely
addressable via hardware or software to avoid communication conflicts on the 12C bus.

Link and TCP/IP Settings

The MTM-USBEtherStem supports host computer connections over its Ethernet jack via TCP/IP sockets. The
MTM-USBEtherStem is designed to interact on the local network segment only. Typical setup is a direct Eth-
ernet connection between a host test machine and the MTM-EtherStem. The host can run a DHCP server to
provide an IP address to the module or, without a DHCP server, the MTM-USBEtherStem will fall back to a
static IP address of 192.168.44.42/24 when it does not receive a response to DHCP requests. In the fallback
IP configuration, manually configuring the host machine interface to communicate on this subnet will enable
communication to the module.

The module features a limited DHCP client which will not function across a network bridge or other gateway
mechanism. The MTM-USBEtherStem will respond to ICMP “ping” requests including broadcast requests.
The brainstem APl interface performs a discovery process prior to establishing communication with the MTM-
EtherStem. Brainstem discovery over IP is accomplished using a UDP multicast request on port 9888, and a
response on the stem to the host UDP port 9889. The MTM-USBEtherStem listens for socket connections on
TCP port 8000. Firewall rules will need to be configured allowing the outgoing multicast request on 9888 and
incoming response on 9889, as well as outgoing socket TCP connections to port 8000.

194 Chapter 1. Devices

BrainStem Reference Manual, Release 2.11.1

MTM-ETHERSTEM Module Entities
Digital

API Documentation: [cpp] [python] [[NET] [LabVIEW]

BrainStem modules may have the ability to read, write or manipulate a digital pin. Digital 1/0 capabilities will
be dictated by the module hardware being used. Module specifics that include the quantity of digital entities
and details for their capacities will be described in that module’s datasheet.

Set/Get Configurations

Gets or Sets the digital pin configuration. Some digital entities may be single purpose functionality or can
be configured for multiple behaviors depending on the hardware. Digital entities that are capable of different
operating configurations can be explicitly set to operate in a desired configuration mode when possible. Defaults
for most digital entities are typically as inputs, but will vary by module hardware.

stem.digital[index] .setConfiguration (mode) [cpp] [python] [NET] [LabVIEW]
stem.digital [index] .getConfiguration (mode) [cpp] [python] [NET] [LabVIEW]

The mode parameter is an integer that correlates to the following:

Value Configuration

Input

Output

RC Servo Input

RC Servo Output

Hi Impedance (Hi-2)
Input with Pull Down

A, wWON-—=O

Set/Get State

Gets or Sets the digital I/O Value. For gets the digital input state will be reported in a boolean fashion. Voltage
threshold tolerance details for the target module will be described in the datasheet. For sets the digital output
state will be asserted logic high or logic low. Voltage threshold details for the target module will be described
in the datasheet.

stem.digital [index] .setState (level) [cpp] [python] [NET] [LabVIEW]

stem.digital[index] .getState(level) [cpp] [python] [NET] [LabVIEW]

1.5. MTM Products 195

BrainStem Reference Manual, Release 2.11.1

If a digital pin is configured in Hi-Z mode its internal circuitry has been disconnected to create a high impedance.
There are no functions that can act on this configuration

Pin Input Output Hi-Z RCServo
DIO O Yes Yes Yes Input
DIO 1 Yes Yes Yes Input
DIO 2 Yes Yes Yes Input
DIO 3 Yes Yes Yes Input
DIO 4 Yes Yes Yes Output
DIO 5 Yes Yes Yes Output
DIO 6 Yes Yes Yes Output
DIO 7 Yes Yes Yes Output
DIO 8 Yes Yes Yes .
DIO9 Yes Yes Yes .
DIO 10 Yes Yes Yes .
DIO 11 Yes Yes Yes .
DIO 12 Yes Yes Yes .
DIO 13 Yes Yes Yes .
DIO 14 Yes Yes Yes .
RCServo

API Documentation: [cpp] [python] [.NET] [LabVIEW]

The RCServo entity provides a pulsed signal based on the RC servo standard. This consist of a period lasting
20ms with a high pulse between 1-2ms. The time high corresponds to a specific position determined by the
servo being used. For example if you are using a 90 degree servo a 1.5ms pulse will correspond to the 45
degrees. 1ms and 2ms pulses will correspond to 0 and 90 degree positions respectively.

The RCServo entity is an overload to the Digital Entity and therefor requires proper configuration of the Digital
entity before the RCServo entity can be enabled.

The MTM-ETHERSTEM board is equipped with 4 RC servo inputs and 4 RC servo outputs. The RC Servo
entity is an overload of the Digital Entity and thus requires proper configuration before this entity can be enabled.

With the RC servo entity, digital output pins generate pulsed signal based on the RC Servo standard consist-
ing of a period lasting 20ms and high pulse time between 1-2ms. The high time corresponds to a specific
position determined by the specific servo being used. RC servo inputs, measure this high time and return the
corresponding position for a servo.

196 Chapter 1. Devices

BrainStem Reference Manual, Release 2.11.1

Get/Set Enable

This functions gets/sets the RCServo function for a given pin (pending, it has been properly configured in the
digital entity). At a firmware level this enables/disables the timers.

stem.servo[index] .setEnable (bEnable) [cpp] [python] [NET] [LabVIEW]

stem.servo[index] .getEnable () [cpp] [python] [NET] [LabVIEW]

Get/Set Position

This functions gets/sets the RCServo position. For outputs this will return the currently set position; however,
for inputs it will return the value seen at the pin pending the pulse is valid. If the pulse or period are invalid a
zero will be returned along with the error code aErrRange. Only index 4-7.

stem.servo[index] .setPosition(position) [cpp] [python] [NET] [LabVIEW]

stem.servo[index] .getPosition () [cpp] [python] [NET] [LabVIEW]

Get/Set Reverse

This functions gets/sets the reverse (invert) option in the RCServo Class. Only index 4-7.
stem.servo[index] .setReverse (reverse) [cpp] [python] [NET] [LabVIEW]

stem.servo[index] .getReverse () [cpp] [python] [NET] [LabVIEW]

12C

API Documentation: [cpp] [python] [[NET] [LabVIEW]

BrainStem modules may have the ability to read, write data on up to 2 12C bus’s

Read/Write Data

BrainStem modules may have the ability to read, write data on up to 2 12C bus’s. The MTM-ETHERSTEM
includes access to a single 12C bus operating at a set 1Mbit/s rate.

Note: The 1Mbit/s bus, while user-accessible, is also used for BrainStem network communication so there
may be other, non-user-initiated traffic when other BrainStem modules are linked.

stem.i2c[index] .read(address, length) [cpp] [python] [NET] [LabVIEW]
stem.i2c[index] .write (address, length) [cpp] [python] [NET] [LabVIEW]

The maximum data size for individual read and write operations on an 12C bus through the BrainStem API is
20 bytes. Sending more than 20 bytes of information must be done as an iterated sequence.

1.5. MTM Products 197

BrainStem Reference Manual, Release 2.11.1

Pullup

Each 12C bus also includes 330Q2 pull-up resistors on the SDA and SCL lines, disabled by default. When using
the MTM-ETHERSTEM in a linked system (communicating over the 1Mbit/s bus), only a single set of pull-ups
along the bus should be enabled in order for the 12C bus to work properly (if more than one set is enabled, the
lines cannot be pulled low for communication). Similarly, when using a single MTM device to communicate with
an external device over the 12C bus, either the internal pull-ups can be enabled, or external hardware pull-ups
added.

stem.i2c[index] .setPullup (bEnable) [cpp] [python] [NET] [LabVIEW]

Analog

API Documentation: [cpp] [python] [.NET] [LabVIEW]

BrainStem modules may have the ability to read an analog voltage (ADC) and convert this into a discrete
digitized value or output a voltage value based on a desired discrete value (DAC). Analog voltage capabilities
will be dictated by the module hardware being used. Module specifics that include the quantity of analog entities
and details for their capacities will be described in that module’s datasheet.

Initiate Bulk Capture

The system can capture any number of samples up the size of the RAM_STORE slot 0 (8191). The capture is
then triggered with

stem.analog[index].initiateBulkCapture () [cpp] [python] [NET] [LabVIEW]

Results of the capture are stored in the RAM_STORE slot 0. Results are always stored in ADC counts as two
little-endian byte pairs with the second byte the most significant. Computing a sample value from the Store
read out is:

Get/Set Bulk Capture Sample Rate and Number of Samples

The MTM-EtherStem’s ADC'’s are also capable of being captured in bulk based on a user defined sample rate.
For additional information on sample rate settings. Configuring and triggering the bulk capture is accomplished
by setting the number of samples and the sample rate, then triggering the capture.

To set the number of samples and the sample rate

stem.analog[index] .setBulkCaptureSampleRate () [cpp] [python] [NET] [LabVIEW]
stem.analog[index] .getBulkCaptureSampleRate () [cpp] [python] [NET] [LabVIEW]
stem.analog[index] .setBulkCaptureNumberOfSamples () [cpp] [python] [NET] [LabVIEW]

stem.analog[index] .getBulkCaptureNumberOfSamples () [cpp] [python] [NET] [LabVIEW]

198 Chapter 1. Devices

BrainStem Reference Manual, Release 2.11.1

Get Bulk Capture State

stem.analog[index] .getBulkCaptureState () [cpp] [python] [NET] [LabVIEW]

Get Voltage/Value

A BrainStem’s A2D reading will always return a 16 bit value. If the module hardware does not have full 16 bit
wide analog to digital conversion capabilities, the measurement will get propagated up to 16 bits wide.

For example, if a 12-bit A2D engine exists in the target module’s hardware, the reading will get promoted in the
firmware layer by shifting up 4 bits to fill out the 16 bit value (0OXOFFF =: 0XOFFF << 4 = OxFFFO0) in the module’s
firmware. This approach allows more portable API code to be generated independent of the target hardware.

setValue and setVoltage is only applicapble for Analog[3]:

stem.analog[index] .setValue () [cpp] [python] [NET] [LabVIEW]
stem.analog[index] .getValue () [cpp] [python] [NET] [LabVIEW]
stem.analog[index] .setVoltage (microvolts) [cpp] [python] [NET] [LabVIEW]

stem.analog[index] .getVoltage () [cpp] [python] [NET] [LabVIEN]

Signal

API Documentation: [cpp] [python] [.NET] [LabVIEW]

SignalClass. Interface to digital pins configured to produce square wave signals. This class is designed to allow
for square waves at various frequencies and duty cycles. Control is defined by specifying the wave period as
(T3Time) and the active portion of the cycle as (T2Time). See the entity overview section of the reference for
more detail regarding the timing.

Signal entity to Digital entity mapping varies from device to device. Please refer to the datasheet.

The MTM-ETHERSTEM board has 5 Signal Input and 4 Signal outputs. The Signal entity allows you to gener-
ate square waves by supplying a period and a time high value. The Signal inputs can also be used as counters.
The Signal entity is an overload of the Digital entity and must first be properly configured before it can be en-
abled.

Set Configurations

Digital 10 Pin Configurations, configure the correct digital pin as a Signal input:

stem.digital [index] .getConfiguration(digitalConfigurationSignalInput) [cpp]
[python] [NET] [LabVIEW]

1.5. MTM Products 199

BrainStem Reference Manual, Release 2.11.1

Get/Set Enable

stem.signal[index] .setEnable (bEnable) [cpp] [python] [NET] [LabVIEW]

stem.signal [index] .getEnable () [cpp] [python] [NET] [LabVIEW]

Get/Set T3 Time

The T3 time defines the period of the waveform in nano seconds.
stem.signal[index] .setT3Time (period) [cpp] [python] [NET] [LabVIEW]

stem.signal[index] .getT3Time () [cpp] [python] [NET] [LabVIEW]

Get/Set T2 Time

The T2 time defines the high period of the waveform in nano seconds.
stem.signal[index] .setT2Time (timeHigh) [cpp] [python] [NET] [LabVIEW]

stem.signal[index].getT2Time () [cpp] [python] [NET] [LabVIEW]

Get/Set Invert

Inverts the meaning of the T2 time. When inverted the T2 time will represent the time in nano seconds that the
waveform is low.

stem.signal[index] .setInvert () [cpp] [python] [NET] [LabVIEN]

stem.signal[index] .getInvert () [cpp] [python] [NET] [LabVIEW]

Store

API Documentation: [cpp] [python] [.NET] [LabVIEW]

Every BrainStem module has one or more stores. Stores are the BrainStem equivalent of a filesystem. Stores
are broken up into a number of slots, each of which can be thought of as a file. A Store generally represents a
specific type of storage. Flash or internal, RAM, or SD if the BrainStem includes an SD slot. The most common
usage of slots and stores is for the storage of reflex code that will run on the BrainStem module. Additionally
Bulk capture of Analog data can write to a slot within a store. Slots within the internal store can be set up as
boot slots by setting the appropriate slot number in the system configuration. See the :doc:” System <system>"
entity for more information about setting a boot slot.

The number and type of stores is Model specific. Details about the number of slots per store, and available
stores can be found in the data sheets for specific models.

There are a number of commands for manipulating stores, which are detailed below. Many of the store com-
mands are only accessible from host API’s and Ul applications, however commands relating to enabling reflex
files in slots are accessible from the reflex language.

Every BrainStem module includes several Store entities and onboard memory slots to load Reflex files (for
details on Reflex, see Reflex Language Reference). One Refiex file can be stored per slot.

The MTM-ETHERSTEM has store slots [0-2].

200 Chapter 1. Devices

BrainStem Reference Manual, Release 2.11.1

Store Slot Storage Type Available Slots

0 RAM 12
1 Internal 1
2 SD 0-255

Get Slot State

For slots which hold reflexes, this read only command returns whether the slot is currently enabled or not. 1 is
enabled 0 is disabled. This command can be called from a reflex.

stem.store[index] .getSlotState (slot) [cpp] [python] [NET] [LabVIEW]

Load/Unload Slot

This command writes a data buffer into a slot for the given store. It is only available from host side API’s.
stem.store[index] .loadSlot (slot, data, _=None) [cpp] [python] [NET] [LabVIEW]

This command reads the slot in the given store into the byte buffer. The length will never be more than the max
buffer size given, but may be less if the slot contents were shorter than max buffer length.

stem.store[index] .unloadSlot (slot) [cpp] [python] [NET] [LabVIEW]

Enable/Disable Slot

This command enables the refliex file in the given store and slot. This command is accessible from the reflex
language.

stem.store[index] .slotEnable(slot) [cpp] [python] [NET] [LabVIEW]

This command disables the refiex file in the given store and slot. This command is accessible from the reflex
language.

stem.store[index] .slotDisable(slot) [cpp] [python] [NET] [LabVIEW]

Slot Capacity

This command gets the maximum capacity of the given slot for the store. This command is accessible from the
reflex language.

stem.store[index] .slotCapacity(slot) [cpp] [python] [NET] [LabVIEW]

1.5. MTM Products 201

BrainStem Reference Manual, Release 2.11.1

Slot Size

This command gets the current size of the data in the given slot for the store. This can be the size in bytes of
the reflex byte code file, or the data size for a bulk capture.

stem.store[index] .slotSize (slot) [cpp] [python] [NET] [LabVIEW]

System

API Documentation: [cpp] [python] [.NET] [LabVIEW]

Every BrainStem module includes a single system entity. The system entity allows the retrieval and manipula-
tion of configuration settings like the module address and input voltage, control over the user LED, as well as
other functionality.

Serial Number

Every MTM-ETHERSTEM is assigned a unique serial number at the factory. This facilitates an arbitrary num-
ber of MTM-ETHERSTEM devices attached to a host computer. The following method call can retrieve the
unique serial number for each device.

stem.system.getSerialNumber (serialNumber) [cpp] [python] [NET] [LabVIEW]

Module Default Base Address

BrainStems are designed to be able to form a reactive, extensible network. All BrainStem modules come with
a default network base address for identification on the BrainStem network bus. The default module base
address for MTM-ETHERSTEM is factory-set as 6, and can be accessed with.

stem.system.getModule (module) [cpp] [python] [NET] [LabVIEW]

Saved Settings

Some entities can be configured and saved to non-volatile memory. This allows a user to modify the startup
and operational behavior for the MTM-ETHERSTEM away from the factory default settings. Saving system
settings preserves the settings as the new default. Most changes to system settings require a save and reboot
before taking effect. For example, upstream and downstream USB Boost settings will not take effect unless a
system save operation is completed, followed by a reset or power cycle. Use the following command to save
changes to system settings before reboot:

202 Chapter 1. Devices

BrainStem Reference Manual, Release 2.11.1

stem.system.save () [cpp] [python] [NET] [LabVIEW]

Saved Configurations

Module Software Offset 12C Rate
Router Address 12C Pullup State
Heartbeat Rate Boot Slot

Reset

Reset the system.

stem.system.reset () [cpp] [python] [NET] [LabVIEW]

Get/Set LED

Set the system LED state. Most modules have a blue system LED. Refer to the module datasheet for details
on the system LED location and color.

stem.system.getLED (value) [cpp] [python] [NET] [LabVIEW]

stem.system.setLED (value) [cpp] [python] [NET] [LabVIEW]

Get/Set Boot Slot
Get the store slot which is mapped when the module boots. Set a store slot to be mapped when the module

boots.

The boot slot will be mapped after the module boots from powers up, receives a reset signal on its reset input,
or is issued a software reset command. Set the slot to 255 to disable mapping on boot.

stem.system.getBootSlot () [cpp] [python] [NET] [LabVIEW]

stem.system.setBootSlot (value) [cpp] [python] [NET] [LabVIEW]

1.5. MTM Products 203

BrainStem Reference Manual, Release 2.11.1

Get Input Voltage

Get the module’s input voltage.

stem.system.getInputVoltage () [cpp] [python] [NET] [LabVIEW]

Get Version

Get the modules firmware version number.

The version number is packed into the return value. Ultility functions in the Version module can unpack the
major, minor and patch numbers from the version number which looks like M.m.p.

stem.system.getVersion () [cpp] [python] [NET] [LabVIEW]

Get/Set Module Software Offset

Set the software address offset.

The module software offset is added to the base module address, and potentially a hardware offset to determine
the final calculated address the module uses on the BrainStem network. You must save and reset the module
for this change to become effective.

stem.system.getModuleSoftwareOffset () [cpp] [python] [NET] [LabVIEW]

stem.system.setModuleSoftwareOffset (value) [cpp] [python] [NET] [LabVIEW]

Get/Set HB Interval

Get the delay between heartbeat packets. Set the delay between heartbeat packets.

For link modules, these heartbeat are sent to the host. For non-link modules, these heartbeats are sent to the
router address. Interval values are in 25.6 millisecond increments. Increments valid values are 1-255; default
is 10 (256 milliseconds).

stem.system.getHBInterval () [cpp] [python] [NET] [LabVIEW]

stem.system.setHBInterval (value) [cpp] [python] [NET] [LabVIEW]

204 Chapter 1. Devices

BrainStem Reference Manual, Release 2.11.1

Get/Set Router

Get the router address the module uses to communicate with the host. Set the router address the module uses
to communicate with the host.

stem.system.getRouter () [cpp] [python] [NET] [LabVIEW]

stem.system.setRouter (value) [cpp] [python] [NET] [LabVIEW]

Get Router Address Setting

Get the router address setting saved in the module. This setting may be different from the effective router if the
router has been set and saved but no reset has been made.

stem.system.getRouterAddressSetting () [cpp] [python] [NET] [LabVIEW]

Get Module

Get the address the module uses on the BrainStem network.

stem.system.getModule () [cpp] [python] [NET] [LabVIEW]

Get Model

Get the module’s model enumeration.

A subset of the possible model enumerations is defined in aProtocolDefs.h under “BrainStem model codes”.
Other codes are be used by Acroname for proprietary module types.

stem.system.getModel () [cpp] [python] [NET] [LabVIEW]

Route to Me

Enables/Disables the route to me function.

This function allows for easy networking of BrainStem modules. Enabling (1) this function will send an 12C
General Call to all devices on the network and request that they change their router address to the of the calling
device. Disabling (0) will cause all devices on the BrainStem network to revert to their default address.

stem.system.routeToMe (value) [cpp] [python] [NET] [LabVIEW]

1.5. MTM Products 205

BrainStem Reference Manual, Release 2.11.1

Complete list of Supported Entities and Functions

Entity Class Entity Option Variable(s) Notes

digital[0-14] setConfiguration
getConfiguration
setState
getState
rcservo[0-7] setEnable
getEnable
setPosition Index 4-7 only
getPosition
setReverse Index 4-7 only
getReverse
i2c[0-1] write
read
analog[0-2] getValue
getVoltage
setBulkCaptureSampleRate
getBulkCaptureSampleRate
setBulkCaptureNumberOfSamples
getBulkCaptureNumberOfSamples
initiateBulkCapture
getBulkCaptureState
analog[3] setValue
setVoltage
signal[0-5] setEnable
getEnable
setlnvert
getlnvert
setT3Time
getT3Time
setT2Time
getT2Time
store[0-2] getSlotState
loadSlot
unloadSlot
slotEnable
slotDisable
slotCapacity
slotSize
system[0] save
reset
setLED
getLED
setBootSlot
getBootSlot
getinputVoltage
getVersion
getModuleBaseAddress
getModuleSoftwareOffset
setModuleSoftwareOffset

continues on next page

206 Chapter 1. Devices

BrainStem Reference Manual, Release 2.11.1

Table 11 - continued from previous page
Entity Class Entity Option Variable(s) Notes

getModuleHardwareOffset
setHBInterval
getHBInterval
getRouterAddressSetting
getModule
getSerialNumber
setRouter

getRouter

getModel

routeToMe

1.5.7 MTM-USBStem

The MTM-USBStem is a BrainStem link module and part of Acroname’s Manufacturing Test Module (MTM)
system. It allows a USB connection to a host PC which may be used for test direction, control and data collec-
tion. It may also be used to load reflex programs to MTM or BrainStem modules for PC-free operation.

With the upstream USB connection on its industry-standard edge connector, the MTM-USBStem is designed
to allow even complex and dense test stations to connect to a PC, using just one cable and daisy-chaining as
many MTM modules as needed. This makes for rapid and error free station bring-up.

To get up to speed with the MTM USBStem and quickly learn about its functionality follow the quick start guide.
Have a look at the basic example or dive into the Programming interface of the MTM Power Module for a more
in depth view.

1.5. MTM Products 207

BrainStem Reference Manual, Release 2.11.1

Quick Start Guide

1. Download The Development Kit

+ Download the BrainStem Development Kit (BDK)?? for your particular operating system and architecture.

+ Download HubTool?® for your particular operating system and architecture.

2. Connect to Device

« Utilize the MTM USBStem by either connecting to the:
— Onboard USB connection
— Card edge USB input

— Through other MTM modules on the local BrainStem bus.

3. Run System

* Open HubTool
» On the bottom right side of the application select the MTM USBStem device.

Note: Linux users will need run the script labeled “udev.sh” located in the “BrainStem_linux_Driverless” folder
before they will be able communicate with a BrainStem device.

Congratulations! You are now ready to start exploring the capabilities of the MTM USBStem. For more infor-
mation please take a look at our Getting Started Guide

Basic Example

C++

#include <iostream>
#include "BrainStem2/BrainStem—all.h"

int main (int argc, const char * argv[]) {

//Create an instance of a MTM-USBSTEM module.
aMTMUSBStem mtm;

//Connect to the hardware.

err = mtm.discoverAndConnect (1linkType, serialNumber, modelNumber)
if (err != aErrNone) {
printf ("Error %d encountered connecting to BrainStem module\n", err);

return 1;

} else { printf ("Connected to BrainStem module.\n"); }

(continues on next page)

22 https://acroname.com/api
23 https://acroname.com/hubtool

208 Chapter 1. Devices

https://acroname.com/api
https://acroname.com/hubtool

BrainStem Reference Manual, Release 2.11.1

(continued from previous page)

//Basic initialization (Get LEDs turned off).
mtm.system.setLED (0) ;

//Ready for testing
//Enable LED
mtm.system.setLED (1) ;

//Turn LED off
mtm.system.setLED (0) ;

//Disconnect
mtm.disconnect () ;
I3
L J
Python

import brainstem

#for easy access to error constants
from brainstem.result import Result
import time

import sys

Create an instance of a MTM-USBSTEM module.
mtm = brainstem.stem.MTMUSBStem() ;

Locate and connect to the first object you find on MTM
result = hub.mtm.discoverAndConnect (1linkType, serialNumber, modelNumber)
if result != Result.NO_ERROR:
print ("Error 2d encountered connecting to BrainStem Module.\n" % result)
else:
print ("Connected to BrainStem module.\n")

#Basic initialization (Get everything turned off).
mtm.system.setLED (0)

##Ready for testing
##Enable LED
mtm.system.setLED (1)

##Finished with testing.
##Turn off LED
mtm.system.setLED (0)

Disconnect from device.

mtm.disconnect () ;

print ("Disconnected from BrainStem module. \n")
-

1.5. MTM Products 209

BrainStem Reference Manual, Release 2.11.1

Indicators and Connections

LEDs

The MTM-USBStem board has a number of LED indicators to assist with MTM system development, debug-
ging, and monitoring. These LEDs are shown in the diagrams below

-;D__:.., 11 .

33 35332
USB Status o giﬁg -}gﬁil
User LED to
Heartbeat

Power _____15-
|
o —

UART1 TX BN i ssssesaes
+4- E

UARTIRX __—4 e 20
UARTOTX __— g2 g i

3883, 0P RN
UARTO RX e "
Watchdo

Programming Interface

The MTM-USBStem is capable of many features. These features are organized into groups called entities.
Through these entities we can access the vast features of the MTM-USBStem.

A complete list of all entities and functions can be found in the Module Entities page.

Software Control

A BrainStem link can be established that will give the user access to the resources available on the MTM-
USBStem. The module can then be controlled via a host running BrainStem APls or operated independently
by running locally embedded, user-defined programs based on Acroname’s BrainStem Reflex language in the
RTOS. A BrainStem link to the MTM-USBStem can be established via one of three (3) interfaces: the onboard
USB connection, the card-edge USB connection, or through another MTM module using the BrainStemprotocol
(more on this interface below). For the USB connection options, once the MTM-USBStem is attached to a host
machine, a user can connect to it via software API:

[stem .discoverAndConnect (1linkType, serialNumber)]

The MTM-USBStem can also work within a network of other Brainstem modules, such as in a test fixture, to give
access to the capabilities of all networked modules. On the MTM platform, networked modules communicate
using the Brainstem protocol, which is transmitted over 12C. Each MTM-USBStem is uniquely addressable via
hardware or software to avoid communication conflicts on the 12C bus.

210 Chapter 1. Devices

BrainStem Reference Manual, Release 2.11.1

Upstream USB Connectivity Options

The MTM-USBStem supports upstream USB connections (to communicate to a host PC) via the mini-B con-
nector, or through pins B14 and B15 of the PCle edge connector. The module defaults to using the edge
connector and will switch to the miniB connector if 5V is present on Vbus at the mini-B connector.

MTM-USBSTEM Module Entities
Digital

API Documentation: [cpp] [python] [.NET] [LabVIEW]

BrainStem modules may have the ability to read, write or manipulate a digital pin. Digital /0 capabilities will
be dictated by the module hardware being used. Module specifics that include the quantity of digital entities
and details for their capacities will be described in that module’s datasheet.

Set/Get Configurations

Gets or Sets the digital pin configuration. Some digital entities may be single purpose functionality or can
be configured for multiple behaviors depending on the hardware. Digital entities that are capable of different
operating configurations can be explicitly set to operate in a desired configuration mode when possible. Defaults
for most digital entities are typically as inputs, but will vary by module hardware.

stem.digital[index] .setConfiguration (mode) [cpp] [python] [NET] [LabVIEW]
stem.digital [index] .getConfiguration (mode) [cpp] [python] [NET] [LabVIEW]

The mode parameter is an integer that correlates to the following:

Set/Get State

Gets or Sets the digital I/O Value. For gets the digital input state will be reported in a boolean fashion. Voltage
threshold tolerance details for the target module will be described in the datasheet. For sets the digital output
state will be asserted logic high or logic low. Voltage threshold details for the target module will be described
in the datasheet.

stem.digital [index] .setState (level) [cpp] [python] [NET] [LabVIEW]

stem.digital [index] .getState (level) [cpp] [python] [NET] [LabVIEW]

If a digital pin is configured in Hi-Z mode its internal circuitry has been disconnected to create a high impedance.
There are no functions that can act on this configuration.

1.5. MTM Products 211

BrainStem Reference Manual, Release 2.11.1

RCServo

API Documentation: [cpp] [python] [.NET] [LabVIEW]

The RCServo entity provides a pulsed signal based on the RC servo standard. This consist of a period lasting
20ms with a high pulse between 1-2ms. The time high corresponds to a specific position determined by the
servo being used. For example if you are using a 90 degree servo a 1.5ms pulse will correspond to the 45
degrees. 1ms and 2ms pulses will correspond to 0 and 90 degree positions respectively.

The RCServo entity is an overload to the Digital Entity and therefor requires proper configuration of the Digital
entity before the RCServo entity can be enabled.

The MTM-USBSTEM board is equipped with 4 RC servo inputs and 4 RC servo outputs. The RC Servo entity
is an overload of the Digital Entity and thus requires proper configuration before this entity can be enabled.

With the RC servo entity, digital output pins generate pulsed signal based on the RC Servo standard consist-
ing of a period lasting 20ms and high pulse time between 1-2ms. The high time corresponds to a specific
position determined by the specific servo being used. RC servo inputs, measure this high time and return the
corresponding position for a servo.

Get/Set Enable

This functions gets/sets the RCServo function for a given pin (pending, it has been properly configured in the
digital entity). At a firmware level this enables/disables the timers.

stem.servo[index] .setEnable (bEnable) [cpp] [python] [NET] [LabVIEW]

stem.servo[index] .getEnable () [cpp] [python] [NET] [LabVIEW]

Get/Set Position

This functions gets/sets the RCServo position. For outputs this will return the currently set position; however,
for inputs it will return the value seen at the pin pending the pulse is valid. If the pulse or period are invalid a
zero will be returned along with the error code aErrRange. Only index 4-7.

stem.servo[index] .setPosition(position) [cpp] [python] [NET] [LabVIEW]

stem.servo[index] .getPosition () [cpp] [python] [NET] [LabVIEW]

Get/Set Reverse

This functions gets/sets the reverse (invert) option in the RCServo Class. Only index 4-7.
stem.servo[index] .setReverse (reverse) [cpp] [python] [NET] [LabVIEW]

stem.servo[index] .getReverse () [cpp] [python] [NET] [LabVIEW]

212 Chapter 1. Devices

BrainStem Reference Manual, Release 2.11.1

12C

API Documentation: [cpp] [python] [.NET] [LabVIEW]

BrainStem modules may have the ability to read, write data on up to 2 12C bus’s

Read/Write Data

BrainStem modules may have the ability to read, write data on up to 2 12C bus’s. The MTM-USBSTEM includes
access to a single 12C bus operating at a set 1Mbit/s rate.

Note: The 1Mbit/s bus, while user-accessible, is also used for BrainStem network communication so there
may be other, non-user-initiated traffic when other BrainStem modules are linked.

stem.i2c[index] .read(address, length) [cpp] [python] [NET] [LabVIEW]
stem.i2c[index] .write (address, length) [cpp] [python] [NET] [LabVIEW]

The maximum data size for individual read and write operations on an 12C bus through the BrainStem APl is
20 bytes. Sending more than 20 bytes of information must be done as an iterated sequence.

Pullup

Each I2C bus also includes 330Q pull-up resistors on the SDA and SCL lines, disabled by default. When using
the MTM-USBSTEM in a linked system (communicating over the 1Mbit/s bus), only a single set of pull-ups
along the bus should be enabled in order for the 12C bus to work properly (if more than one set is enabled, the
lines cannot be pulled low for communication). Similarly, when using a single MTM device to communicate with
an external device over the 12C bus, either the internal pull-ups can be enabled, or external hardware pull-ups
added.

stem.i2c[index] .setPullup (bEnable) [cpp] [python] [NET] [LabVIEW]

Analog

API Documentation: [cpp] [python] [.NET] [LabVIEW]

BrainStem modules may have the ability to read an analog voltage (ADC) and convert this into a discrete
digitized value or output a voltage value based on a desired discrete value (DAC). Analog voltage capabilities
will be dictated by the module hardware being used. Module specifics that include the quantity of analog entities
and details for their capacities will be described in that module’s datasheet.

1.5. MTM Products 213

BrainStem Reference Manual, Release 2.11.1

Initiate Bulk Capture

The system can capture any number of samples up the size of the RAM_STORE slot 0 (8191). The capture is
then triggered with

stem.analog[index].initiateBulkCapture () [cpp] [python] [NET] [LabVIEW]

Results of the capture are stored in the RAM_STORE slot 0. Results are always stored in ADC counts as two
little-endian byte pairs with the second byte the most significant.

Get/Set Bulk Capture Sample Rate and Number of Samples

The MTM-EtherStem’s ADC'’s are also capable of being captured in bulk based on a user defined sample rate.
For additional information on sample rate settings. Configuring and triggering the bulk capture is accomplished
by setting the number of samples and the sample rate, then triggering the capture.

To set the number of samples and the sample rate use:

stem.analog[index] .setBulkCaptureSampleRate () [cpp] [python] [NET] [LabVIEW]
stem.analog[index] .getBulkCaptureSampleRate () [cpp] [python] [NET] [LabVIEW]
stem.analog[index] .setBulkCaptureNumberOfSamples () [cpp] [python] [NET] [LabVIEW]

stem.analog[index] .getBulkCaptureNumberOfSamples () [cpp] [python] [NET] [LabVIEW]

Get Bulk Capture State

stem.analog[index] .getBulkCaptureState () [cpp] [python] [NET] [LabVIEW]

Get/Set Value and Voltage

A BrainStem’s A2D reading will always return a 16 bit value. If the module hardware does not have full 16 bit
wide analog to digital conversion capabilities, the measurement will get propagated up to 16 bits wide.

For example, if a 12-bit A2D engine exists in the target module’s hardware, the reading will get promoted in the
firmware layer by shifting up 4 bits to fill out the 16 bit value (OxOFFF =: OXOFFF << 4 = 0xFFFO) in the module’s
firmware. This approach allows more portable API code to be generated independent of the target hardware.

setValue and setVoltage is only applicapble for Analog[3]:

stem.analog[index] .setValue () [cpp] [python] [NET] [LabVIEW]
stem.analog[index] .getValue () [cpp] [python] [NET] [LabVIEW]
stem.analog[index] .setVoltage (microvolts) [cpp] [python] [NET] [LabVIEN]

stem.analog[index] .getVoltage () [cpp] [python] [NET] [LabVIEW]

214 Chapter 1. Devices

BrainStem Reference Manual, Release 2.11.1

Signal

API Documentation: [cpp] [python] [.NET] [LabVIEW]

SignalClass. Interface to digital pins configured to produce square wave signals. This class is designed to allow
for square waves at various frequencies and duty cycles. Control is defined by specifying the wave period as
(T3Time) and the active portion of the cycle as (T2Time). See the entity overview section of the reference for
more detail regarding the timing.

Signal entity to Digital entity mapping varies from device to device. Please refer to the datasheet.

The MTM-USBSTEM board has 5 Signal Input and 4 Signal outputs. The Signal entity allows you to generate
square waves by supplying a period and a time high value. The Signal inputs can also be used as counters. The
Signal entity is an overload of the Digital entity and must first be properly configured before it can be enabled.

Set Configurations
Digital 10 Pin Configurations, configure the correct digital pin as a Signal input:

stem.digital [index] .getConfiguration(digitalConfigurationSignalInput) [cpp]
[python] [NET] [LabVIEW]

Get/Set Enable

stem.signal[index] .setEnable (bEnable) [cpp] [python] [NET] [LabVIEW]

stem.signal[index] .getEnable () [cpp] [python] [NET] [LabVIEN]

Get/Set T3 Time

The T3 time defines the period of the waveform in nano seconds.
stem.signal[index] .setT3Time (period) [cpp] [python] [NET] [LabVIEW]

stem.signal[index] .getT3Time () [cpp] [python] [NET] [LabVIEN]

Get/Set T2 Time

The T2 time defines the high period of the waveform in nano seconds.
stem.signal[index] .setT2Time (timeHigh) [cpp] [python] [NET] [LabVIEW]

stem.signal[index] .getT2Time () [cpp] [python] [NET] [LabVIEW]

1.5. MTM Products 215

BrainStem Reference Manual, Release 2.11.1

Get/Set Invert

Inverts the meaning of the T2 time. When inverted the T2 time will represent the time in nano seconds that the
waveform is low.

stem.signal [index] .setInvert () [cpp] [python] [NET] [LabVIEN]

stem.signal[index] .getInvert () [cpp] [python] [NET] [LabVIEW]

Store

API Documentation: [cpp] [python] [.NET] [LabVIEW]

Every BrainStem module has one or more stores. Stores are the BrainStem equivalent of a filesystem. Stores
are broken up into a number of slots, each of which can be thought of as a file. A Store generally represents a
specific type of storage. Flash or internal, RAM, or SD if the BrainStem includes an SD slot. The most common
usage of slots and stores is for the storage of reflex code that will run on the BrainStem module. Additionally
Bulk capture of Analog data can write to a slot within a store. Slots within the internal store can be set up as
boot slots by setting the appropriate slot number in the system configuration. See the :doc:” System <system>’
entity for more information about setting a boot slot.

The number and type of stores is Model specific. Details about the number of slots per store, and available
stores can be found in the data sheets for specific models.

There are a number of commands for manipulating stores, which are detailed below. Many of the store com-
mands are only accessible from host API’s and Ul applications, however commands relating to enabling reflex
files in slots are accessible from the reflex language.

Every BrainStem module includes several Store entities and onboard memory slots to load Reflex files (for
details on Reflex, see Reflex Language Reference). One Reflex file can be stored per slot.

The MTM-USBSTEM has store slots [0-2].

Store Slot Storage Type Available Slots

0 RAM 12
1 Internal 1
2 SD 0-255

Get Slot State

For slots which hold reflexes, this read only command returns whether the slot is currently enabled or not. 1 is
enabled 0 is disabled. This command can be called from a reflex.

stem.store[index] .getSlotState (slot) [cpp] [python] [NET] [LabVIEW]

216 Chapter 1. Devices

BrainStem Reference Manual, Release 2.11.1

Load/Unload Slot

This command writes a data buffer into a slot for the given store. It is only available from host side API’s.
stem.store[index] .loadSlot (slot, data, _=None) [cpp] [python] [NET] [LabVIEW]

This command reads the slot in the given store into the byte buffer. The length will never be more than the max
buffer size given, but may be less if the slot contents were shorter than max buffer length.

stem.store[index] .unloadSlot (slot) [cpp] [python] [NET] [LabVIEW]

Enable/Disable Slot

This command enables the reflex file in the given store and slot. This command is accessible from the reflex
language.

stem.store[index] .slotEnable (slot) [cpp] [python] [NET] [LabVIEW]

This command disables the reflex file in the given store and slot. This command is accessible from the reflex
language.

stem.store[index] .slotDisable(slot) [cpp] [python] [NET] [LabVIEW]

Slot Capacity

This command gets the maximum capacity of the given slot for the store. This command is accessible from the
reflex language.

stem.store[index] .slotCapacity(slot) [cpp] [python] [NET] [LabVIEW]

Slot Size

This command gets the current size of the data in the given slot for the store. This can be the size in bytes of
the reflex byte code file, or the data size for a bulk capture.

stem.store[index] .slotSize (slot) [cpp] [python] [NET] [LabVIEW]

System

API Documentation: [cpp] [python] [.NET] [LabVIEW]

Every BrainStem module includes a single system entity. The system entity allows the retrieval and manipula-
tion of configuration settings like the module address and input voltage, control over the user LED, as well as
other functionality.

1.5. MTM Products 217

BrainStem Reference Manual, Release 2.11.1

Serial Number

Every MTM-USBSTEM is assigned a unique serial number at the factory. This facilitates an arbitrary number
of MTM-USBSTEM devices attached to a host computer. The following method call can retrieve the unique
serial number for each device.

stem.system.getSerialNumber (serialNumber) [cpp] [python] [NET] [LabVIEN]

Module Default Base Address

BrainStems are designed to be able to form a reactive, extensible network. All BrainStem modules come with
a default network base address for identification on the BrainStem network bus. The default module base
address for MTM-USBSTEM is factory-set as 6, and can be accessed with.

stem.system.getModule (module) [cpp] [python] [NET] [LabVIEW]

Saved Settings

Some entities can be configured and saved to non-volatile memory. This allows a user to modify the startup and
operational behavior for the MTM-USBSTEM away from the factory default settings. Saving system settings
preserves the settings as the new default. Most changes to system settings require a save and reboot before
taking effect. For example, upstream and downstream USB Boost settings will not take effect unless a system
save operation is completed, followed by a reset or power cycle. Use the following command to save changes
to system settings before reboot:

stem.system.save () [cpp] [python] [NET] [LabVIEW]

Saved Configurations

Module Software Offset 12C Rate
Router Address 12C Pullup State
Heartbeat Rate Boot Slot

218 Chapter 1. Devices

BrainStem Reference Manual, Release 2.11.1

Reset

Reset the system.

stem.system.reset () [cpp] [python] [NET] [LabVIEW]

Get/Set LED

Set the system LED state. Most modules have a blue system LED. Refer to the module datasheet for details
on the system LED location and color.

stem.system.getLED (value) [cpp] [python] [NET] [LabVIEW]

stem.system.setLED (value) [cpp] [python] [NET] [LabVIEW]

Get/Set Boot Slot
Get the store slot which is mapped when the module boots. Set a store slot to be mapped when the module

boots.

The boot slot will be mapped after the module boots from powers up, receives a reset signal on its reset input,
or is issued a software reset command. Set the slot to 255 to disable mapping on boot.

stem.system.getBootSlot () [cpp] [python] [NET] [LabVIEW]

stem.system.setBootSlot (value) [cpp] [python] [NET] [LabVIEW]

Get Input Voltage

Get the module’s input voltage.

stem.system.getInputVoltage () [cpp] [python] [NET] [LabVIEW]

Get Version

Get the modules firmware version number.

The version number is packed into the return value. Utility functions in the Version module can unpack the
major, minor and patch numbers from the version number which looks like M.m.p.

stem.system.getVersion () [cpp] [python] [NET] [LabVIEW]

1.5. MTM Products 219

BrainStem Reference Manual, Release 2.11.1

Get/Set Module Software Offset

Set the software address offset.

The module software offset is added to the base module address, and potentially a hardware offset to determine
the final calculated address the module uses on the BrainStem network. You must save and reset the module
for this change to become effective.

stem.system.getModuleSoftwareOffset () [cpp] [python] [NET] [LabVIEW]

stem.system.setModuleSoftwareOffset (value) [cpp] [python] [NET] [LabVIEW]

Get/Set HB Interval

Get the delay between heartbeat packets. Set the delay between heartbeat packets.

For link modules, these heartbeat are sent to the host. For non-link modules, these heartbeats are sent to the
router address. Interval values are in 25.6 millisecond increments. Increments valid values are 1-255; default
is 10 (256 milliseconds).

stem.system.getHBInterval () [cpp] [python] [NET] [LabVIEW]

stem.system.setHBInterval (value) [cpp] [python] [NET] [LabVIEW]

Get/Set Router

Get the router address the module uses to communicate with the host. Set the router address the module uses
to communicate with the host.

stem.system.getRouter () [cpp] [python] [NET] [LabVIEW]

stem.system.setRouter (value) [cpp] [python] [NET] [LabVIEW]

Get Router Address Setting

Get the router address setting saved in the module. This setting may be different from the effective router if the
router has been set and saved but no reset has been made.

stem.system.getRouterAddressSetting () [cpp] [python] [NET] [LabVIEW]

220 Chapter 1. Devices

BrainStem Reference Manual, Release 2.11.1

Get Module

Get the address the module uses on the BrainStem network.

stem.system.getModule () [cpp] [python] [NET] [LabVIEW]

Get Model

Get the module’s model enumeration.

A subset of the possible model enumerations is defined in aProtocolDefs.h under “BrainStem model codes”.
Other codes are be used by Acroname for proprietary module types.

stem.system.getModel () [cpp] [python] [NET] [LabVIEW]

Route to Me

Enables/Disables the route to me function.

This function allows for easy networking of BrainStem modules. Enabling (1) this function will send an 12C
General Call to all devices on the network and request that they change their router address to the of the calling
device. Disabling (0) will cause all devices on the BrainStem network to revert to their default address.

stem.system.routeToMe (value) [cpp] [python] [NET] [LabVIEW]

Complete list of Supported Entities and Functions

Entity Class Entity Option Variable(s) Notes

digital[0-14] setConfiguration
getConfiguration
setState
getState

rcservo[0-7] setEnable
getEnable
setPosition Index 4-7 only
getPosition
setReverse Index 4-7 only
getReverse

i2c[0-1] write
read

analog[0-2] getValue
getVoltage
setBulkCaptureSampleRate
getBulkCaptureSampleRate
setBulkCaptureNumberOfSamples

continues on next page

1.5. MTM Products 221

BrainStem Reference Manual, Release 2.11.1

Table 12 - continued from previous page

Entity Class

Entity Option

Variable(s) Notes

analog[3]

signal[0-5]

store[0-2]

system|[0]

getBulkCaptureNumberOfSamples
initiateBulkCapture
getBulkCaptureState

setValue
setVoltage
setEnable
getEnable
setinvert
getlnvert
setT3Time
getT3Time
setT2Time
getT2Time
getSlotState
loadSlot
unloadSlot
slotEnable
slotDisable
slotCapacity
slotSize
save

reset
setLED
getLED
setBootSlot
getBootSlot

getinputVoltage

getVersion

getModuleBaseAddress
getModuleSoftwareOffset
setModuleSoftwareOffset
getModuleHardwareOffset

setHBInterval
getHBInterval

getRouterAddressSetting

getModule

getSerialNumber

setRouter
getRouter
getModel
routeToMe

222

Chapter 1. Devices

Here you can find software developed by Acroname.

2.1 HubTool

eoe® Acroname HubTool: v2.10.2
Port0 Port 1 Port2 Port3 Port 4 Port5 Control Power C System Power PD Logging

& Port: 0 Upstream (& Port: 1 Upstream (& Port: 2 Upstream [Port: 3 Upstream

Port (% Power cc2 @ Port @ Power Port & Power Port @ Power

Data(*) 8 cC(*) @ Veonn(%) Data(*) @ cc(?) veonn (%) Data(*) @ cc(®) @ Veonn(®) Data(® @ cc(®) @ Veonn(®)

Data Mode: ~ Upstream @ DataMode: Downstream @ DataMode: Downstream @ DataMode: Downstream -]

Data Rate: USB2 USB3 @ DataRate: N/A B Data Rate: N/A B DataRate: N/A a

Power Role: Source @ PowerRole: N/A B PowerRole: NJA B PowerRole: N/A]

Power Mode: PD B PowerMode: PD B PowerMode: PD B PowerMode: PD []

VBus: (%) vBus: (%) vBus: () vBus: ®

19.976! 0.000V 0.000V 0.000V
= 2,181A 0.001A 0.002A 0.001A

VConn: 5.083V -0.001A(") VConn: ©0.000V 0.000A(") VConn: ©.000V 0.000A(") VConn: 0.000V 0.000A(")

[ZPort: 4 Upstream (& Port: 5 Upstream (& Control (4 Power C

Port % Power Port % Power Port Port cc2

Data(*) @ cc(®) @ Veonn(*) Data(") @ cc(®) @ Veonn (") ® ® ® ® ® ®

Data Mode: Downstream @ DataMode: Downstream B DataMode: Control O

Data Rate: N/A B Data Rate: N/A B Data Rate: USB2 HS O DataRate:

Power Role: N/A B PowerRole: N/A B PowerRole: N/A B PowerRole: Sink

Power Mode: PD © W PowerMode: PD B Power Mode: B Power Mode:

VBus: ®) vBus: ®) vus: ®) vBus: @]
0.001V 0.000V 0.002V 19.843V
0.001A 0.000A ©.000A -2.351A

VConn: 0.000V 0.000A(") VConn: 0.000V_0.000A(") VConn: 0.000V 0.000A(")

Software Feature: Quick Charge (T99-QUICKCHARGE): Enabled Device Type: | Serial Number: | <->

Software Feature: PD-Builder (T99-PD-BUILDER): Enabled USBHub3c ¢

Software Feature: PD Logger (T99-PD-LOG): Enabled

Software Feature: Vbus Validation (T99-VBUS-VAL): Enabled

Software Feature: External Load Test (T99-EXT-LOAD): Enabled

Software Feature: Serial Control Feature (T99-SERIAL): Enabled Firmware Management

HubTool is a utility that lets users view detailed information and control settings of Acroname devices. Users
can operate HubTool either on the USB host computer or a computer linked to the Acroname device’s Control
port.

223

BrainStem Reference Manual, Release 2.11.1

2.1.1 What can it do?

HubTool provides a simple GUI to:
» Enable and disable ports (virtually plug and unplug)

— Selectively toggle port data and power connections such as USB 3, USB 2, and VBus independently

+ View connection speed

* Visualize per-port current and voltage

+ Select automatic and manual upstream host port switching
» Set PD power rules (USBHub3c) and port power modes

» Control Acroname devices over the local network

2.1.2 Which Acroname devices work with HubTool?

USB hubs and switches®* USBHub3c?®
USBHub3p2®
USBHub2x42”
USB-C-Switch2®

MTM manufacturing test modules®® MTM-Load-12°
MTM-DAQ-23!
MTM-PM-132
MTM-10-Serial®?
MTM-Relay3*
MTM-EtherStem3®
MTM-USBStem3®

2.1.3 Host system requirements

HubTool binaries are available for these platforms:
» Windows 10 and higher
« Intel and Apple Silicon Macs running macOS 10.15 or higher

e Linux:

— x86_64 Ubuntu LTS 16.04, 18.04, 20.04, 22.04, 24.04 - Required dependencies: apt install xcb*

24 https://acroname.com/store-grid/field_category/Programmable-USB

25 hitps://acroname.com/store/programmable-industrial-power-delivery-hub-s99-usbhub-3c-pro
26 https://acroname.com/store/programmable-industrial-hub-s79-usbhub-3p

27 https://acroname.com/store/industrial- intelligent-4-port-hub-s77-usbhub-2x4

28 https://acroname.com/store/programmable-industrial-switch-s85-rdvr-usbcsw

29 https://acroname.com/manufacturing-test-modules-mtm

30 https://acroname.com/store/s96-mtm-load- 1

31 https://acroname.com/store/s92-mtm-dag-2

32 https://acroname.com/products/ACRONAME-MTM-1-CHANNEL-POWER-MODULE

33 https://acroname.com/products/ACRONAME-MTM-10-SERIAL-SOFTWARE-CONTROLLED-USB-HUB
34 https://acroname.com/store/s78-mtm-relay

35 https://acroname.com/store/s67-mtm-etherstem

36 https://acroname.com/store/s69-mtm-usbstem

224 Chapter 2

. Software

https://acroname.com/store-grid/field_category/Programmable-USB
https://acroname.com/store/programmable-industrial-power-delivery-hub-s99-usbhub-3c-pro
https://acroname.com/store/programmable-industrial-hub-s79-usbhub-3p
https://acroname.com/store/industrial-intelligent-4-port-hub-s77-usbhub-2x4
https://acroname.com/store/programmable-industrial-switch-s85-rdvr-usbcsw
https://acroname.com/manufacturing-test-modules-mtm
https://acroname.com/store/s96-mtm-load-1
https://acroname.com/store/s92-mtm-daq-2
https://acroname.com/products/ACRONAME-MTM-1-CHANNEL-POWER-MODULE
https://acroname.com/products/ACRONAME-MTM-IO-SERIAL-SOFTWARE-CONTROLLED-USB-HUB
https://acroname.com/store/s78-mtm-relay
https://acroname.com/store/s67-mtm-etherstem
https://acroname.com/store/s69-mtm-usbstem

BrainStem Reference Manual, Release 2.11.1

x86_64 Red Hat 8 - Required dependencies: dnf install qt5-qtbase-gui

x86_64 Red Hat 9 - Required dependencies: dnf install qt6-qtbase-gui
arm64v8 Ubuntu LTS 16.04, 18.04, 20.04, 22.04, 24.04 - Required dependencies: apt install xcb*
i686 Ubuntu LTS 16.04 - Required dependencies: apt install xcb*

2.1.4 Installation

1. Download HubTool*” and BrainStem Development Kit (BDK)38
2. Open the .dmg/ .zip/ .tgz

3. Move the contents to a folder, or move just the HubTool application to your preferred location.

Note: Linux users will need run the script labeled “udev.sh” located in the “BrainStem_linux_Driverless” folder
before they will be able communicate with a BrainStem device.

2.1.5 Usage

Click on the HubTool app to launch it. The lower right panel shows any Acroname devices that are connected.
The lower left panel is the console. On launch, HubTool writes default settings to the console.

BrainStem 12C discovery: Disabled Device Type: | Serial Number: | <->

USB discovery: Enabled USBCSwitch P
BrainStem aEther discovery: Enabled USBHub3p ¢
TCPIP discovery: Disabled USBHUb3c ¢

Port Mapping: Enabled

Select a device to initiate a connection -------------- > .
Firmware Management

Startup messages in HubTool Console

Table 1: Startup messages

Console message Meaning

BrainStem 12C discovery: Dis- Discover Acroname devices connected to a USB-connected MTM

abled module’s 12C bus

USB discovery: Enabled Discover local USB-connected Acroname devices

BrainStem aEther discovery: En- Discover Acroname devices connected through other applications (e.g.

abled BrainD), local only by default

TCPIP discovery: Disabled Discover MTM-EtherStem modules connected to the host by ethernet

Port Mapping: Enabled Get USB descriptors for each downstream device, E.G. vendor ID, se-
rial number

Discovery methods (USB, aEther, TCP/IP, and Brainstem 12C) are enabled and disabled using the Discovery
menubar dropdown. Port mapping is enabled in the options menu. Both settings reset to default values with
every launch of HubTool.

Discovery menu

37 https://acroname.com/hubtool
38 hitps://acroname.com/api

2.1. HubTool 225

https://acroname.com/hubtool
https://acroname.com/api

BrainStem Reference Manual, Release 2.11.1

&Y Acroname HubTool: v2.10.2

Discovery | Options
v USB
v | aFther
TCP/IP
BrainStem I2C

2.1.6 Connecting devices

When an Acroname device is connected, the device type, serial number, and an icon indicating the connection
type will appear in the lower right pane. If the device is connected by USB to the local host, the USB icon will
appear (q,). If the device is connected to a remote host, the aEther icon will be shown instead (%’). Click on

the device serial number to view the device interface. Right-click to bring up a contextual menu to disconnect,
set sample rate, and perform a factory reset.

: - = - 1]
Device Type: Serial Nun Disconnect 50 mS
Factory Reset > 500 mS
I l 1000 mS

2000 mS

Firmware Management 5000 mS

Device context menu

2.1.7 Control devices on remote hosts

HubTool can also view and control shared Acroname devices connected to other hosts on the same network
(WiFi or ethernet). To enable remote control of devices, follow these steps:

Acroname device
LAN L\ m—|)SB==’ (JSB devices

Local computer Remote computer

Controlling remote devices over the local network
On the remote host:

+ Connect the device via USB

 Launch HubTool

+ Click the device serial number to connect

» Enable aEther and deselect “Local only” in Options > aEther Config

226 Chapter 2. Software

BrainStem Reference Manual, Release 2.11.1

' Options
Take Screenshot Acroname Hul
aEther Config >« Enabled
v Port Mapping Local Only
v Streaming Interfaces >

On the local host:
+ Launch HubTool
» Enable aEther and deselect “Local only” in Options > aEther Config

The serial number of the remote device and the aEther icon should appear in the local host’s device list. Click
to view the remote device’s interface.

Device Type: @ Serial Number: | <->

USBHub3p X

aEther-connected remote device

2.1.8 Updating device firmware

Discover
Model String = Serial Number = Current Target Update Update Status
USBCSwitch 2101 W 2.10.2 Update Update to: 2.10.2
USBHub3p 210.2 w 2.10.2 Update Up to Date (Updating again will check for purchased Software Features.)
USBHub3c 2102 » »2102 | | Update |Up to Date (Updating again will check for purchased Software Features.)
& 2.10.0
& 29.29

Firmware update panel

To update the firmware of a connected Acroname device, in the lower-right panel, click “Firmware Manage-
ment” to bring up the firmware update panel. A list of connected devices with serial number, currently installed
firmware version, target version, and an update button should appear. Select target firmware version, and click
update to update the firmware. If the device isn’t visible, check that it is connected and click discover.

Firmware update is required to enable newly purchased software add-on features, even if the installed version
is current.

See the Firmware Management documentation for more information on updating device firmware.

2.1. HubTool 227

BrainStem Reference Manual, Release 2.11.1

2.1.9 Device-specific interfaces

Each Acroname product has a distinct interface in HubTool. Select your product below:

USBHub3c

[JCN Acroname HubTool: v2.10.2
Port 0 Port 1 Port 2 Port 3 Port 4 Port 5 Control Power C System Power PD Logging
@ Port: 0 Upstream (& Port: 1 Upstream (& Port: 2 Upstream (& Port: 3 Upstream

Port 8 Power cc2

Port % Power

Port @ Power

Port 8 Power

Data(®) @ cc(*) 8 Vconn(®)

Data(®) 8 cc(®) @ Vconn(®)

Data(®) @ cc(®) 8 Veconn(®)

Data(®) @ cc(®) @ Vconn(®)

Data Mode: Upstream @ Data Mode: Downstream @ Data Mode: Downstream @ Data Mode: Downstream]

Data Rate: USB2 USB3 @ Data Rate: N/A @ DataRate: N/A B DataRate: N/A a

Power Role: Source @ PowerRole: N/A @ PowerRole: N/A B PowerRole: N/A |

Power Mode: ~ PD B PowerMode: PD B PowerMode: PD B PowerMode: PD []

VBus: VBus: @ VBus: @ VBus:

19.976V 0. 000V 0.000V 0. 000V
= 2.181A 0.001A 0.002A 0.001A

VConn: 5.083V -0.001A(") VConn: 0.000V 0.000A(") VConn: 0.000V 0.000A(") VConn: 0.000V 0.000A(")

@ Port: 4 Upstream (£ Port: 5 Upstream (& Control (& Power C

Port @ Power Port @ Power Port Port cc2

Data(®) 8@ cc(*®) @ Vconn(®) Data(®) @ cCc(*) @ Vconn(®) ® ® ® ®

Data Mode: ~ Downstream @ DataMode: Downstream @ DataMode: Control m}

Data Rate: N/A B DataRate: N/A @ DataRate: USB2 HS 0 DataRate:

Power Role: ~ NJA B PowerRole: N/A @ PowerRole: N/A B Power Role: Sink

Power Mode: ~ PD © B PowerMode: PD B Power Mode: B Power Mode:

VBus: (*) vBus: () vBus: (%) vBus: ®
0.001V 0. 000V 0.002v 19.843V
0.001A 0.000A 0.000A = -2.351A

VConn: 0.000V _0.000A(") VConn: ©0.000V _0.000A(%) VConn: 0.000V_0.000A(")

Software Feature: Quick Charge (T99-QUICKCHARGE): Enabled
Software Feature: PD-Builder (T99-PD-BUILDER): Enabled
Software Feature: PD Logger (T99-PD-LOG): Enabled

Software Feature: Vbus Validation (T99-VBUS-VAL): Enabled
Software Feature: External Load Test (T99-EXT-LOAD): Enabled
Software Feature: Serial Control Feature (T99-SERIAL): Enabled

for USBHub3c

USBHub3c*? is an industrial USB-C hub featuring 6 full-featured 10 Gbps USB 3.2 data ports, one USB 2.0
control port, and a dedicated PD power input port. Each data port can provide up to 100 W of power and can
act as a downstream-facing or upstream-facing port.

Device Type: | Serial Number: | <->

USBHub3c ¢

Firmware Management

HubTool presents a unified dashboard to control and view the state of USBHub3c.

Add-on software features

Software Feature: Quick Charge (T99-QUICKCHARGE): Enabled
Software Feature: PD-Builder (T99-PD-BUILDER): Enabled
Software Feature: PD Logger (T99-PD-LOG): Enabled

Software Feature: Vbus Validation (T99-VBUS-VAL): Enabled

Software Feature: External Load Test (T99-EXT-LOAD): Enabled
Software Feature: Serial Control Feature (T99-SERIAL): Enabled

Device Type:

39 HubTool interface

Serial Number: | <->

USBHub3c N

Firmware Management

Add-on features listed in HubTool console after selecting the USBHub3c on the right

39 https://acroname.com/store/programmable-industrial-power-delivery-hub-s99-usbhub-3c-pro
40 https://acroname.com/store/programmable-industrial-power-delivery-hub-s99-usbhub-3c-pro

228

Chapter 2. Software

https://acroname.com/store/programmable-industrial-power-delivery-hub-s99-usbhub-3c-pro
https://acroname.com/store/programmable-industrial-power-delivery-hub-s99-usbhub-3c-pro

BrainStem Reference Manual, Release 2.11.1

USBHub3c supports add-on software features, which can be purchased to enable new capabilities. When a
USBHub3c is selected in HubTool, the console will list the available add-on software features and show their
enabled / disabled status on the device.

Table 2: Add-on licensed software features

Feature Capability

Quick Support Qualcomm Quick Charge® 2 and 3 on ports 0 - 5 (Pro model only)
charge*!

PD Edit Power Data Objects (PDOs) on each port to emulate any USB-PD configuration
builder*?

PD logger*® Log USB-PD communications on all ports

VBus vali- Override normal VBus voltage set points and current limits. Used in testing a device’s re-
dation*4 sponse to incorrect VBus voltages after USB-PD negotiation.

External Test VBus sinking with external programmable or resistive electronic loads. Use with External
load test*® Load Expansion Accessory*®

Serial con- Enable RS-232 serial control of the hub via the serial expansion accessory*®

trol*’

Licenses for additional features are available for purchase*®. After purchase, update the hub firmware to enable
the new features.

Dashboard tabs

[) [] Acroname HubTool: v2.10.1
Port 0 Port1 Port 2 Port 3 Port 4 Port 5 Control Power C System Power PD Logging
®2 part n ®2 part 1 Gt TTnnatranm ®2 part 2 Gt Tinatranm ®) part 2 Gt Tinnatranm

HubTool USBHub3c dashboard tab view

After selecting USBHub3c, HubTool will launch the device dashboard in summary view. Buttons along the top
of the window represent tabs for:

41 https://acroname.com/store/t99-quickcharge

42 hitps://acroname.com/store/t99- pd- builder

43 https://acroname.com/store/t99-pd-log

44 https://acroname.com/store/t99-vbus-val

45 hitps://acroname.com/store/t99-ext-load

46 hitps://acroname.com/store/s101-load-exp

47 https://acroname.com/store/t99-ext-load

48 hitps://acroname.com/store/s103-serial-exp

49 https://acroname.com/store-grid/field_category/Software-Licenses

2.1, HubTool 229

https://acroname.com/store/t99-quickcharge
https://acroname.com/store/t99-quickcharge
https://acroname.com/store/t99-pd-builder
https://acroname.com/store/t99-pd-builder
https://acroname.com/store/t99-pd-log
https://acroname.com/store/t99-vbus-val
https://acroname.com/store/t99-vbus-val
https://acroname.com/store/t99-ext-load
https://acroname.com/store/t99-ext-load
https://acroname.com/store/s101-load-exp
https://acroname.com/store/s101-load-exp
https://acroname.com/store/t99-ext-load
https://acroname.com/store/t99-ext-load
https://acroname.com/store/s103-serial-exp
https://acroname.com/store-grid/field_category/Software-Licenses
../index.html#updating-device-firmware

BrainStem Reference Manual, Release 2.11.1

Summary tab

The summary tab displays simplified interface panels for Ports 0-5, Control port, and Power C port (power input
on rear panel).

[] ® Acroname HubTool: v2.10.2
Port 0 Port 1 Port 2 Port 3 Port 4 Port 5 Control Power C System Power PD Logging

& Port: 0 Upstream [Port: 1 Upstream [Port: 2 Upstream [£ Port: 3 Upstream

Port 2 Power cc2 Port 2 Power Port % Power Port (2 Power

Data(®) 8 cc(®) @ Vconn (%) Data(®) @ cc(®) @ Vconn(®) Data(*) @ cc(®) 8 Vconn(®) @ Data(® @ cc(® @ Veconn(®

Data Mode: Upstream [@ DataMode: Downstream @ DataMode: Downstream @ DataMode: Downstream]

Data Rate: USB2 USB3 @ DataRate: N/A @ DataRate: N/A @ Data Rate: N/A]

Power Role: Source @ PowerRole: N/A @ PowerRole: N/A @ PowerRole: N/A []

Power Mode: PD B PowerMode: PD @ Power Mode: PD @ Power Mode: PD [|

VBus: (») VBus: (*) VBus: () VBus:

19.976V 0.000V 0.000V 0.000V
= 2.181A 0.001A 0.002A 0.001A

VConn: 5.083V —0.001A(") VConn: 0.000V 0.000A(%) VConn: 0.000V 0.000A(") VConn: 0.000V 0.000A(%)

& Port: 4 Upstream [£ Port: 5 Upstream (&, Control [, Power C

Port (2 Power Port 2 Power Port Port cc2

@ Data(®) @ cc(®) @ Veonn (%) ® Data(®) @ cc(®) @ Veonn (%) ® ® ®

DataMode: ~ Downstream @ DataMode: Downstream @ DataMode: Control]

Data Rate: N/A B DataRate: N/A @ DataRate: USB2 HS O Data Rate:

Power Role: ~ NJA B PowerRole: N/A @ PowerRole: N/A @ PowerRole: Sink

Power Mode: PD B PowerMode: PD @ Power Mode: @ Power Mode:

VBus: VBus: VBus: () vBus: ®
0.001V 0.000V 0.002V 19.843V
0.001A 0.000A 0.000A _~ -2.351A

VConn: 0.000V 0.000A(%) VConn: 0.000V 0.000A(") VConn: 0.000V 0.000A(")

Summary tab view

Each port interface panel shows a consolidated view of the corresponding port tab.

(¢ Port: 0 Upstream

Port %2 Power Ccc2

Data(*) @ cc(®) @ Vconn(®)

Data Mode: Upstream
Data Rate: USB2 USB3
Power Role: Source

Power Mode: PD

©

VBus:

19,976V
mmom ImImIo s 9,181A
VConn: 5.083V -0.001A(~)

Port panel in summary view

230 Chapter 2. Software

BrainStem Reference Manual, Release 2.11.1

Port tabs

Control ~ PowerC | System = Power PD Logging

Advertisements Misc

Request Data Obiject: Local Source

Power Data Object: Local Sink

Power Data Object: Local Source -Active- Rule: 4 N\

En # PDO | Voltage (DC) | Amps/Watts

eoe Acroname HubTool: v2.10.2
Summary Port1 | Port2 Port3 Portd Port§
& Port: 0 Upstream
Port Power CC2 Active
Data(®) @ cc(®) @ veonn(®)
Data Mode: Upstream o
Data Rate: USB2 USB3 =]
Power Role: Sourcing]
Power Mode: Power Delivery []
VBus: ®

Voltage Setpoint (V): 20.00 &

Current Limit (A): 4.90

20 -

10k 20.017V

0 ’ 2.035A

5.083V

0- 0.001A

Software Feature: Serial Control Feature (T99-SERIAL): Enabled
Software Feature: Quick Charge (T99-QUICKCHARGE): Enabled
Software Feature: PD-Builder (T99-PD-BUILDER): Enabled
Software Feature: PD Logger (T99-PD-LOG): Enabled

Software Feature: Vbus Validation (T99-VBUS-VAL): Enabled
Software Feature: External Load Test (T99-EXT-LOAD): Enabled
Software Feature: Serial Control Feature (T99-SERIAL): Enabled

PDO Flags Mode State
Unchunked Message Support Auto

Dual Role Data Auto

USB Communications Possible Auto
Unconstrained Power Auto (<]

USB Suspend Auto (C]

Dual Role Power Auto

RDO State
Maximum Operate Current 4700mA
Operating Current 3000mA
Object Position (index) 4
Raw 0x4784B1D6

Edit Source Rules

Power Data Object: Remote Sink N

Device Type: | Serial Number: | <->

USBHub3c ~ 775D2B32 ¥

Firmware Management

The port tabs show a more detailed view of each port. Control and Power C ports have specialized functions
and some options are unavailable. The left side of the port tab contains Power and data settings. The right
side of the port tab views contains sub tabs for USB-PD Power rules, Advertisements, and Miscellaneous

messages and settings.

Power and data settings

Port tab view - power and data settings

The left side of each port tab view contains power and data settings for the port. At the top are the port name

and upstream toggle.

Port name (editable @) - friendly port name used by HubTool and ControlRoom)

Upstream toggle - indicates and selects which port is in upstream mode and able to connect to a host

2.1. HubTool

231

BrainStem Reference Manual, Release 2.11.1

LXK) Acroname HubTool: v2.10.2
summary (I Port1 Port2 Port3 Port4 Port5 Control PowerC System Power
[Port: 0 Upstream Advertisements Misc
Port @ Power Eezisie Request Data Object: Local Source
Data(") @ cc(*) @ Vconn (%) Power Data Object: Local Sink
Data Mode: Upstream (] v
Power Data Obiject: Local Source -Active- Rule: 4
Data Rate: USB2 USB3 o !
Power Role: Sourcing B En # PDO | Voltage (DC) Amps/Watts
Power Mode: Power Delivery ® =
= v
VBus: ®
Voltage Setpoint (V): 20.00 & o
V)
Current Limit (A): ~ 4.90
¢
20
15 &
10 20.009V
PDO Flags Mode State
Unchunked Message Support Auto
Dual Role Data Auto
— 1 USB Communications Possible Auto (C]
1.701A Unconstrained Power Auto
USB Suspend Auto
Dual Role Power Auto
®
— RDO State
Maximum Operate Current 4700mA
= Operating Current 3000mA
Y Object Position (index) 4
Raw 0x4784B1D6
Edit Source Rules
o — ~0.000A Power Data Object: Remote Sink
[Power Data Object: Remote Source N\
-1 5 P [R—— f— i F——

Software Feature: External Load Test (T99-EXT-LOAD): Enabled
Software Feature: Serial Control Feature (T99-SERIAL): Enabled
Software Feature: Quick Charge (T99-QUICKCHARGE): Enabled
Software Feature: PD-Builder (T99-PD-BUILDER): Enabled
Software Feature: PD Logger (T99-PD-LOG): Enabled

Software Feature: Vbus Validation (T99-VBUS-VAL): Enabled

Power and data toggles

Device Type:

Serial Number: | <->

USBHub3c [

Firmware Management

PD Logging

Below the port name are the power and data toggles. Click the carats () to expand the view.

Port 7 Power

CC2 Active

Data(*) @ cc(®) 8 vVconn(®)

Table 3: Power and data toggles

Enables and disables

Port
Power

Data
HS
SS

CC
CC1, CC2

Vconn

Vconn1, Vconn2

Port data and power

VBus
All data

USB 2 (High Speed) pins
USB 3 (Super Speed) pins

Both CC pins

CC pins individually

Vconn pins

Vconn pins individually

232

Chapter 2. Software

BrainStem Reference Manual, Release 2.11.1

Data and power status, power mode

Below the toggles are data mode, data rate, and power role status indicators, followed by the
power mode menu. The virtual LED color corresponds to the color of the real LED indicators on the

USBHub3c front panel.
Data Mode: Upstream (]
Data Rate: USB2 USB3 SuperSpeed+ [|
Power Role: Sourcing]
Power Mode: Power Delivery [|
Table 4: Data and power status
Name Options Virtual LED color
Data mode Upstream (to host) D Green
Downstream Red
Control port D White
Dgta rate USB 2 D Yellow
(highest speed) ysB 3 (5 Gbys) [Green
USB 3 SuperSpeed+ (10 Gb/s) . Blue
Power role Sinking (receives power) [:] Green
Sourcing (provides power) . Red

Port power mode is selected from a dropdown menu. In the summary view, the modes are abbre-

viated.
(&, Port: 1 Upstream
Port (% Power CC1 Active
v ~ M - Vo
Disabled
Data Mode: Standard Downstream Port [
Data Rate: Dedicated Charging Port (CDP/DCP) [
Power Role: Quick Charge™ O
Power Mode: AR INETSY < [|
— Programmable Power Supply
VBus: USB-C

\/nltana Qatnnint mrres

2.1. HubTool 233

BrainStem Reference Manual, Release 2.11.1

@ Port: 1 Upstream
Port (% Power cc1
Data"@-“ @,
Data Mode: SDP]
Data Rate: CDP/DCP []
Power Role: Qc (]
[|

Power Mode:
PS

VBus: USBC

10 a22v

Power mode selection in port view (left) and summary view (right)

Table 5: Power modes

Sum- Power mode Definition

mary
ab-
bre-
via-
tion
N/A Disabled Power off
SDP Standard 5V, 900 mA
Downstream
Port
CDP/D(Dedicated 5V,3A
Charging Port Red
(CDP/DCP)
QC Quick Qualcomm® Quick Charge™ 2.0 and 3.0 fast charging, re- D
Charge™ quires Quick Charge feature license 3 A Green
PD Power Deliv- USB-PD revision 2.0 and 3.2 compliant
ery PD fixed voltage 5-20 Vupto 5 A, Blue

USB PD-PPS and QC 4+ variable voltage upto 5-21V, 5

A

PS Programmable Manually set2.8V -21Vand0 A -5 A, requires VBus val- D

Power Supply idation feature license
USBC USB-C 5V,3A

White

0J

Pur-
ple

In USB-C and PD modes, the VBus is only enabled after strapping resistors are detected on the
CC lines, while SDP, CDP/DCP, PS, and QC modes provide VBus continuously. In CDP and SDP
modes, the port acts as a source if downward facing, and a sink if upward facing.

234

Chapter 2. Software

BrainStem Reference Manual, Release 2.11.1

VBus voltage and current control

(Requires VBus validation add-on®?)

Power Mode: Programmable Power Supply

VBus:
Voltage Setpoint (V): 11.90
Current Limit (A): 1.25

Manually set VBus voltage and current

When Programmable Power Supply (PS) mode is enabled, VBus voltage setpoint and current
limit can be set directly, transforming the port into a programmable power supply capable of sup-
plying up to 100 Watts. These are saveable settings (System tab / Save) that persist through reset.

In Power Delivery (PD) mode, the user-set values override the negotiated values. However, PD
negotiations are still active and PD events or errors can trigger re-negotiation, which will replace
the user-set values. These values should only be changed when the power role is set to sourcing.

In USB-C, SDP, CDP/DCP modes, VBus settings revert to 5 V and default current on port connect

or disconnect.
Setting Value

Voltage setpoint 2.8V -21V
Current limit 0A-5A

Warning: Can damage attached equipment!

Voltage and current display

Shows a graph of the VBus and VConn voltage and current of the port.
VBus and VConn panel view

Clicking on the port graph pops up the Port Plots window with a larger rolling strip chart showing alll
ports. Click the carat (@)to expand each port chart. If PD logging is enabled, PD messages will

be marked in yellow.

Port Plots window

Left vertical axis - voltage (V)
Right vertical axis - current (A)
Horizontal axis - time (s)

By default, the plot will be scrolling. To stop scrolling, drag the dark gray scroll bar to the left. To
enable scroll-to-zoom, click the desired axis.

50 https://acroname.com/reference/devices/usbhub3c/software_features/vbus_validation.html

2.1. HubTool 235

https://acroname.com/reference/devices/usbhub3c/software_features/vbus_validation.html

BrainStem Reference Manual, Release 2.11.1

VBus:
Voltage Setpoint (V): 5.10

Current Limit (A):

20

3.20

<> <>

5.103V

1.245A

0.000V

0.000A

20.0 -Port-t

Port 2

Port 3

Port 4

Port 5

(<R N H<T<N<]

Control

Power C

00:01:50

USBHub3c Port Plots

00:01:55
Time (hh:mm:ss)

00:02:00

236

Chapter 2. Software

BrainStem Reference Manual, Release 2.11.1

Device descriptors

If Options > Port Mapping is selected, when a device is attached to a downstream port, its descrip-
tors will scroll at the bottom of the port panel. Click the carat () to expand:

Descriptors:
VID:PID 05AC:12A8
Product: iPhone

Manufacturer: Apple Inc.
Serial Number:

Table 6: Descriptor table

Descriptor Content

VID:PID 16-bit vendor ID and 16-bit product ID
Product Product name string

Manufacturer Manufacturer name string

Product serial number Product serial number

ATT Indicates device is attached

Power rules

The right side of the port tab views contains sub-tabs for USB-PD power rules, advertisements, and miscella-
neous messages and settings. The power rules section presents a set of vertical tabs on the right side of the
port view:

Power rules vertical tabs
The vertical tabs are:
» Request Data Object
» Power Data Object: Local Sink
» Power Data Object: Local Source
» Power Data Object: Remote Sink

» Power Data Object: Remote Source

Request Data Object: Local [Source or Sink]

A Request Data Object (RDO) tells the host about the sink’s capabilities and selects one of the
Power Data Objects (PDOs) offered by the source by specifying the PDO’s index (1-7).

When the port is configured as a sink:

+ Tab label shows “Local Sink”

+ Panel displays the RDO sent from the hub (sink) to the source device
When the port is configured as a source:

+ Tab label shows “Local Source”

+ Panel displays the RDO received by the hub (source) from the sinking device (informational
only)

2.1. HubTool 237

BrainStem Reference Manual, Release 2.11.1

[] @ Acroname HubTool: v2.10.2

Summary Port 1 Port 2 Port 3 Port 4 Port 5 Control Power C System Power PD Logging

& Port: 0 Upstream Advertisements Misc
RS (FOET Geafaite Request Data Object: Local Source
Data(® cc(®) & veonn () Power Data Object: Local Sink
Data Mode: Upstream (] = N
Power Data Object: Local Source -Active- Rule: 4
Data Rate: USB2 USB3 @ g
Power Role: Sourcing (] En | # PDO | Voltage (DC) Amps/Watts
Power Mode: Power Delivery []
V|
VBus:
Voltage Setpoint (V): 20.00 =
v
Current Limit (A): 4.90 C
20
15 |
10k 20.009V
5t PDO Flags Mode State
2 : e — — e — Unchunked Message Support Auto a
Dual Role Data Auto
T USB Communications Possible Auto
oF 1.701A Unconstrained Power Auto
2 USB Suspend Auto
4L Dual Role Power Auto
VConn:
5 RDO State
At Maximum Operate Current 4700mA
3F Operating Current 3000mA
o 5.076V Object Position (index) 4
] aw 0x4784B1D6
oL
r ;
Edit Source Rules
0 —-0.000A Power Data Object: Remote Sink
Power Data Object: Remote Source
Ak
0 I o o o oo ol oo ol o oo @
Software Feature: External Load Test (T99-EXT-LOAD): Enabled Device Type: | Serial Number: | <->
Software Feature: Serial Control Feature (T99-SERIAL): Enabled USBHub3c ¢

Software Feature: Quick Charge (T99-QUICKCHARGE): Enabled

Software Feature: PD-Builder (T99-PD-BUILDER): Enabled

Software Feature: PD Logger (T99-PD-LOG): Enabled

Software Feature: Vbus Validation (T99-VBUS-VAL): Enabled Firmware Management

238 Chapter 2. Software

BrainStem Reference Manual, Release 2.11.1

Advertisements Misc

Request Data Object: Local Source

RDO Information State
Unchunked Message Support

USB Suspend

No USB Communications Possible

Capability Mismatch

Giveback

Maximum Operate Current

Operating Current

Object Position (index) 1

Raw 0x1204B12C

Power Data Object: Local Sink

Device Type: Serial Number: | <->

2.1. HubTool 239

BrainStem Reference Manual, Release 2.11.1

Advertisements Misc

Request Data Object: Local Sink

RDO Information

Unchunked Message Support

USB Suspend

State

No USB Communications Possible

Capability Mismatch

Giveback

Maximum Operate Current

Operating Current
Object Position (index)

Raw

1500mA

1500mA

~
v
~
v

1

0x13825896

Power Data Object: Local Sink

Power Data Object: Local Source

Power Data Object: Remote Sink

Power Data Object: Remote Source -Active- Rule: 1

RDO local source (left) and local sink (right) views

Table 7: Request Data Object tab options

RDO Informa-
1{{e]}]

Meaning

Unchunked mes-
sage support

USB suspend

No USB com-
munications
possible
Capability mis-
match
Giveback
Maximum oper-
ate current
Operating current
Object position
(index)

Raw

Checked = unchunked mode; supports larger data payloads

Unchecked = legacy “chunked” mode; leave unchecked for maximum com-
patibility

Checked = OK for host to suspend device when in USB suspend mode
Unchecked = host should not suspend device in USB suspend mode
Device can not communicate over USB

Source PDO modes are not sufficient for device to operate at full capability

Device can go to a lower power state if needed
Maximum current the sinking device is capable of drawing

Nominal operating current of the sinking device
Index of PDO requested, range 1-7

The RDO message expressed as 32-bit hexadecimal value

240

Chapter 2. Software

BrainStem Reference Manual, Release 2.11.1

Power Data Object: Local Sink

This tab shows the settings for the port’s local sink Power Data Object (PDO). This is how the port
tells a remote source about its capabilities and how much power it can accept. If the port is not
operating as a sink, these settings have no effect. At the top of the panel is a table of PDO modes

that the port can accept as a sink.

Advertisements

Table 8: PDO mode list column headings

Heading Meaning

En Enabled; index 1 is always enabled
Index of PDO mode (1 -7)
PDO PDO type (fixed, battery, variable, APDO)

Voltage (DC) PDO voltage (range if variable)
Amps /Watts PDO maximum amperage or wattage

Misc

Request Data Object: Local Sink

Power Data Object: Local Sink

En # PDO Voltage (DC) Amps/Watts

[<J<H<

PDO Flags

Dual Role Data

USB Communications Possible
Unconstrained Power

Higher Capability

Dual Role Power

Auto
Auto
Auto
Auto
Auto

Mode State

Edit Sink Rules

Power Data Object: Local Source

Power Data Object: Remote Sink

Power Data Object: Remote Source -Active- Rule: 1

Local Sink PDOQ list and flags

2.1. HubTool

241

BrainStem Reference Manual, Release 2.11.1

Table 9: PDO flags

PDO flag Mode State Meaning

Dual Role Data En- Checkec Can be host or peripheral

USB Communications able, if flag Supports USB data

Possible Dis- is en-

Unconstrained Power able, abled AC powered or large battery

Higher Capability Auto Sink needs more than 5 V for full functionality
Dual Role Power Can source or sink power

Edit sink rules button (requires PD Builder license)

Pops up Power Rule Editor.

Power Data Object: Local Source

This tab shows the settings for the port’s local source Power Data Object (PDO). If the port is not
operating as a source, these settings have no effect. At the top is a table of PDO modes that the
port can provide as a source. If active, the PDO rule index is listed in the tab title.

Table 10: PDO mode list column headings

Heading Meaning

En Enabled; index 1 is always enabled
Index of PDO mode (1 -7)
PDO PDO type (fixed, battery, variable, APDO)

Voltage (DC) PDO voltage (range if variable)
Amps / Watts PDO maximum amperage or wattage

242 Chapter 2. Software

BrainStem Reference Manual, Release 2.11.1

CNERIIEEE Advertisements Misc

Request Data Object: Local Source

Power Data Object: Local Sink

Power Data Object: Local Source -Active- Rule: 4

En # PDO | Voltage (DC) Amps/Watts

(CE<H<H<H<N<

PDO Flags

Unchunked Message Support Auto
Dual Role Data Auto
USB Communications Possible Auto
Unconstrained Power Auto
USB Suspend Auto

Dual Role Power Auto

RDO

Maximum Operate Current
Operating Current

Object Position (index)
Raw

Mode State

ofofofofofo)

State

4700mA
3750mA
4

0x4785DDD6

Edit Source Rules

Power Data Object: Remote Sink

Power Data Object: Remote Source

Local source PDQO list and flags

Table 11: PDO flags

PDO flag Mode State Meaning

Unchunked Message En- Checkec Checked = unchunked mode; supports larger

Support able, if flag data payloads
Dis- is en- Unchecked = legacy “chunked” mode; leave
able, abled unchecked for maximum compatibility

Dual Role Data Auto Can be host or peripheral

uUSB Communications Supports USB data

Possible

Unconstrained Power AC powered or large battery

USB Suspend Checked = OK for host to suspend device

Dual Role Power

when in USB suspend mode

Unchecked = host should not suspend device
in USB suspend mode

Can source or sink power

Edit source rule button (requires PD Builder license)

Pops up Power Rule Editor.

2.1. HubTool

243

BrainStem Reference Manual, Release 2.11.1

Power Data Object: Remote Sink

This tab shows the power sink settings for the remote device’s Power Data Object (PDO). Since
these settings are controlled by the remote device, this tab is informational only. At the top is a list

of PDO modes that the remote device can accept as a sink.

Table 12: PDO mode list column headings

Heading Meaning

En
#
PDO

Voltage (DC)
Amps / Watts

Enabled; index 1 is always enabled

Index of PDO mode (1 - 7)

PDO type (fixed, battery, variable, APDO)
PDO voltage (range if variable)

PDO maximum amperage or wattage

Advertisements Misc

Request Data Object: Local Source

Power Data Object: Local Sink

Power Data Object: Local Source -Active- Rule: 4

Power Data Object: Remote Sink

PDO Voltage (DC) Amps/Watts

PDO Flags State

Dual Role Data

USB Communications Possible
Unconstrained Power

Higher Capability

Dual Role Power

Request Minimum Request Update

Power Data Object: Remote Source

Remote sink PDO list and flags

244

Chapter 2. Software

BrainStem Reference Manual, Release 2.11.1

Table 13: PDO flags (informational only)

PDO flag State Meaning

Dual Role Data Checked Can be host or peripheral

USB Communications Possi- if flag Supports USB data

ble is en-

Unconstrained Power abled AC powered or large battery

Higher Capability Sink needs more than 5 V for full functionality
Dual Role Power Can source or sink power

Request minimum, Request update buttons

[Not implemented]

Power Data Object: Remote Source

This tab shows settings for the remote device’'s Power Data Object (PDO) and its Request Data
Objectif active. Since the PDO settings are controlled by the remote device, the PDO mode list and
flags are informational only. At the top is a list of PDO modes that the remote device can provide
as a source. If the remote device is acting as a source, the active PDO rule index is listed in the tab
title.

2.1. HubTool 245

BrainStem Reference Manual, Release 2.11.1

Advertisements Misc

Request Data Object: Local Source

Power Data Object: Local Sink

Power Data Object: Local Source -Active- Rule: 1

Power Data Object: Remote Sink

Power Data Object: Remote Source

PDO | Voltage (DC) Amps/Watts

PDO Flags State
Unchunked Message Support

Dual Role Data

USB Communications Possible

Unconstrained Power

USB Suspend

Dual Role Power

Request Update

246

Chapter 2. Software

BrainStem Reference Manual, Release 2.11.1

Advertisements Misc

Request Data Object: Local Sink

Power Data Object: Local Sink

Power Data Object: Local Source

Power Data Object: Remote Sink

Power Data Object: Remote Source -Active- Rule: 1

PDO Voltage (DC) Amps/Watts

PDO Flags State

Unchunked Message Support
Dual Role Data

USB Communications Possible
Unconstrained Power

USB Suspend

Dual Role Power

RDO Control State
Maximum Operate Current 1500mA C
Operating Current 1500mA C
Object Position (index) 1

Raw 0x13825896

Request Update

Remote source PDO list, flags and RDO control

Table 14: PDO mode list column headings

Heading Meaning

En Enabled; index 1 is always enabled
Index of PDO mode (1 - 7)
PDO PDO type (fixed, battery, variable, APDO)

Voltage (DC) PDO voltage (range if variable)

Amps /Watts PDO maximum amperage or wattage

2.1. HubTool

247

BrainStem Reference Manual, Release 2.11.1

Table 15: Remote source PDO fiags (informational only)

PDO flag State Meaning

Unchunked Message Support Checked Checked = unchunked mode; supports larger data
if flag payloads Unchecked = legacy “chunked” mode;
is en- leave unchecked for maximum compatibility

Dual Role Data abled Can be host or peripheral

USB Communications Possi- Supports USB data

ble

Unconstrained Power AC powered or large battery

USB Suspend Checked = OK for host to suspend device when in

USB suspend mode Unchecked = host should not
suspend device in USB suspend mode
Dual Role Power Can source or sink power

RDO control

When the hub port is acting as a sink, some sink RDO settings can be controlled directly
from the bottom of the Remote Source tab. These settings mirror the fields in the Request
Data Object: Local Sink tab.

Table 16: Remote source RDO control settings

RDO Information Meaning

Maximum operate current Maximum current the sinking device is capable of drawing

Operating current Nominal operating current of the sinking device
Object position (index) Index of PDO requested, range 1-7
Raw The RDO message expressed as 32-bit hexadecimal value

Request update button

[Not implemented]

Power rule editor (requires PD builder add-on feature®')

5T https://acroname.com/store/t99-pd-builder

248 Chapter 2. Software

BrainStem Reference Manual, Release 2.11.1

[] o Power Rule Editor
Port: 1 Power Type: Local Source Rules

En Rule PDO Type Min Voltage (mV) | Max Voltage (mV) = Power (mW) = Current (mA) Raw Set Rule = Set Default
3000 Set Reset

2 Fixed 9000 9000 3000 Set Reset

3 Fixed 15000 15000 3000 Set Reset

4 Fixed 20000 20000 5000 Set Reset

5 APDO 5000 11000 3000 Set Reset

6 APDO 5000 16000 3000 Set Reset

7 APDO 5000 21000 5000 Set Reset

The power rule editor sets sink and source power rules for each port.

Table 17: Power rule editor headings

Heading Meaning

En Enabled; index 1 is always enabled
Rule Index of PDO mode (1 -7)
PDO PDO type (fixed, battery, variable, APDO)

Min Voltage (mV) Min PDO voltage
Max Voltage (mV) Max PDO voltage

Power (mW) Max PDO power

Current (mA) Max PDO current

Raw Raw bytes of PDO message
Set rule Set rule after changes

Set default Return rule to default

Table 18: PDO Types

PDO Definition

type

Fixed Fixed supply voltage of 5V, 9V, 15V, 20 V, current limit 0 A - 5 A. Source must have
at least one fixed PDO at 5 V

Vari- Represents a poorly regulated supply. The voltage must stay between the minimum

able and maximum voltage; minimum voltage must be >= 80% of maximum voltage

Bat- Batteries can be connected to VBus directly as a source. Specifies maximum and min-

tery imum voltage (in 50 mV steps) and maximum power (in 250 mW steps)

APDO Programmatically controllable source. Voltage range set in 20 mV steps, up to 3.3V -
21V. Current Imit0A-5A

2.1. HubTool 249

BrainStem Reference Manual, Release 2.11.1

Advertisements

Power Rules Advertisements Misc

Port Policy: =~ Sink/Source

Preferred Port Policy: ~ Auto

Power role advertisements subtab
USB-PD advertisements tell connected devices the power policy of the port and its preferred policy.
Port policy

» None - no power

» Source - provides source

+ Sink - receives power

+ Sink / Source - can provide or receive power according to the Preferred port policy
Preferred port policy (Only has an effect if port policy is set to Sink / Source)

» None - no power

+ Source - provides power

* Sink - receives power

» Follow data - provides power if downstream-facing, receives power if upstream-facing

+ Auto - negotiate with the connected device

250 Chapter 2. Software

BrainStem Reference Manual, Release 2.11.1

Misc

Power Rules Advertisements m

Cable Information:

Send Request:
Hard Reset

Send

Overrides:

Cable Current
Port Power Limit
Auto Discovery

Misc subtab

The Misc subtab contains Cable information, Send request, and Overrides

Cable information

Power Rules Advertisements m

Cable Information:

Send Request:
Manufacturer Info Soppp

Send

Cable information panel with e-mark data
Displays power and data capacity for e-marked cables connected to the hub and a device.

* Hub port must be providing VConn (VConn strip chart showing 5 V)

2.1. HubTool 251

BrainStem Reference Manual, Release 2.11.1

+ If VConn strip chart shows 0 V, send “VConn Swap” message to swap whether the hub or

device is providing VConn

To read e-mark without a device, connect both ends of the cable to ports of USBHub3c, with one
port set as sink or auto and the other set to source or auto. View the cable info panel on the source

port.

Send Request

This control sends USB PD requests to the connected device to initiate a connection sequence.
There is no guarantee that the request will succeed, and many of these request messages will be

unsupported by the connected device.

Send request Definition

Hard Reset
Soft Reset

Data Reset

Power Role Swap

Power Fast Role Swap

Data Role Swap

VCONN Swap

Sink Go To Min

Request Remote Source PDOs
Request Remote Sink PDOs
Request Remote Extended Source
Caps

Request Remote Extended Sink Caps
Status

PPS Status

Battery Capabilities

Battery Status

Manufacturer Info Sop
Manufacturer Info Sopp
Manufacturer Info Soppp
Discover Identity Sop

Discover Identity Sopp
Discover Identity Soppp
Revision

Source Info

Country Codes

Country Info

Reinitialize PD communications and cycle VBus
Reinitialize PD communications, but maintains power connec-
tion

Cycle USB data connection [unimplemented]
Exchange source and sink power roles

Fast exchange source and sink power roles

Swap upstream and downstream ask roles

Swap whether the hub or device is supplying VConn
Sink goes to minimum power draw

Get PDO from remote source

Get PDO from remote sink

Get extended source capabilities

Get extended sink capabilities

Get status

Get PPS status

Get battery capabilities (Design cap, last full cap)

Get Battery status (state of charge, charging status)

Get device manufacture info

Get cable manufacturer info (nearest VConn sourcing port)
Get cable manufacturer info (opposite from VConn sourcing port)
Device type and capabilities

Cable type and capabilities (Vconn end)

Cable type annd capabilities (not VConn end)

USB PD revision and version numbers for connected device
Source port power capability

Country of origin

Country of origin

252

Chapter 2. Software

BrainStem Reference Manual, Release 2.11.1

Overrides

Cable current - overrides the 3 A current limit for cables that don’t specify 5 A via e-mark

Port power limit - overrides port power budgeting and allows full power output up to 105 W per
port

Warning: Can exceed power supply current limit and brown out the hub, triggering
areset

Auto discovery - overrides the auto discovery feature. When enabled, the hub will only establish
a basic power connection and not request vendor information. Used for legacy compatibility and

debugging.
System tab
[] @® Acroname HubTool: v2.10.1
Summary Port 0 Port 1 Port 2 Port 3 Port 4 Port 5 Control Power C System Power PD Logging
System Information
SN: Voltage: 19.4 VDC Hardware Offset:0
Model: USBHub3c Pro (24 C 14 A Router: 6
odel: ub3c Pro urrent: b ~
(24) SW Offset: 0 0o
Firmware:2.10.1 Temperature: 37C
Save Reset LED
Module: 6
Rails: Serial: Host Configuration: 12C:
Rail 0 Enabled Switching Behavior Upstream Port Pull-ups
Rail 1 Baud Rate 9600 Fixed B o Enable Disable
Rait2 Protocol Extron
Rail 3
Rail 4
Rail 5
Rail 6

HubTool USBHub3c system tab

The system tab contains information and settings for the hub.

2.1. HubTool 253

BrainStem Reference Manual, Release 2.11.1

System information

Heading Meaning

SN Hub serial number

Model Hub model name and number, e.g. USBHub3c Pro (24)
Firmware Currently installed firmware version

Module Address of the module on the Brainstem network
Voltage Voltage at the input power source port

Current Input current at the input power source port

Temperature System temperature
Hardware off- Increments Brainstem module address by a hardware setting - fixed to 0 in

set USBHub3c

Router Address of the routing Brainstem module

Software Increment the module address. Requires Save and Reset

offset

Save Store select changed settings

Reset Soft reset of the hub

LED Toggles blue user LED on front panel, used debugging and to identify the hub

Rails

Requires External Load®® add-on feature. Array of toggles to enable VBus rails 0 - 6 on the 20-pin
expansion connector. Rails 0 - 5 represent ports 0 - 5. Rail 6 is an additional 5 V rail for triggering
or powering external devices. Default = off

Serial

Requires RS232 Serial Control Feature® feature. Use Serial RS232 Expansion Connector Acces-
sory>* to break out the serial pins.

» Enabled (toggle)
 Baud rate (1200 - 115200 bps)
 Protocol (Undefined, Extron, BrainStem)

52 https://acroname.com/store/t99-ext-load
53 https://acroname.com/store/t99-serial
54 https://acroname.com/store/s103-serial-exp

254 Chapter 2. Software

https://acroname.com/store/t99-ext-load
https://acroname.com/store/t99-serial
https://acroname.com/store/s103-serial-exp
https://acroname.com/store/s103-serial-exp

BrainStem Reference Manual, Release 2.11.1

Host configuration

Switching behavior
* Fixed (default)

« Port priority - sets lowest-numbered port that is connected to a host-capable device to up-
stream mode

Upstream port

Shows current upstream port. Select Port 0 - 5 to connect to host - default = 0

12C

Enables and disables pullups on the 12C bus - 103 (SDA) and 104 (SCL) on the expansion connector

Power tab

[] [C] Acroname HubTool: v2.10.1

Summary Port 0 Port 1 Port 2 Port 3 Port 4 Port 5 Control Power C System m PD Logging

System Allocated Power

Y 25 vars) @Y 229 watty) (Port 2715 watts)((Bort s 715 watts) (IR 0 Watts) (EEEIERY o watts) @SHBNY 0 watts)

GEEEE |

Total Allocated Power: 79.90 Watts Total Power Usage: 64.69 Watts
Power Limit: 90.0 Watts Input Power Source: Power C

Port 0 Port 1
Current Power: 23.42 W Allocated Power: 25.00 W current Power: 23.84 W Allocated Power: 24.90 W
Available Power: 25.00 W Power Limit: 105.000 G Available Power: 25.00 W Power Limit: 105.000 G
VBUS Accum Power: 23059 mWh & VCONN Accum Power: @ mwh | & VBUS Accum Power: 16542 mWh &5 VCONN Accum Power: 3 mwh | &5
Port 2 Port 3
@ KN] e |

A A
Current Power: 6.53 W Allocated Power: 15.00 W current Power: 10.90 W Allocated Power: 15.00 W
Available Power: 25.00 W Power Limit: 105.000 Available Power: 15.00 W Power Limit: 105.000
VBUS Accum Power: 210 mWh | & VCONN Accum Power: @ mwh | &5 VBUS Accum Power: 263 mWh | & VCONN Accum Power: @ mwWh &5
Port 4 Port 5

Y Y
(' ' ' ' ' ' ' ' ' (' ' ' ' ' ' ' ' '

A A
Current Power: 0.00 W Allocated Power: @ W Current Power: 0.00 W Allocated Power: 0.00 W
Available Power: 25.00 W Power Limit: 105.000 C Available Power: 25.00 W Power Limit: 105.000
VBUS Accum Power: @ mwWh | &5 VCONN Accum Power: @ mWh | & VBUS Accum Power: @ mwh | &5 VCONN Accum Power @ mWh &5
Control Power C

hd
(' ' ' ' ' '] , ' | ' '

A

5 .00 Allocated Power: 0.00 W + —75.

Current Power 0.00 W o F , Current Power 75.56 W Allocated Power: ~100.00 W
Available Power: 25.00 W Power Limit: 105.000 { Available Power: 25.00 W
VBUS Accum Power: @ mwh [& VCONN Accum Power @ mWh [& VBUS Accum Power: —46205 mWh | £ Power Limit: 105.000

HubTool USBHub3c Power tab

The power tab shows the allocation and actual flow of power through the hub.

2.1. HubTool

255

BrainStem Reference Manual, Release 2.11.1

System allocated power panel

Across the top of this panel are the allocated currents of each port. Positive currents represent that
the port is a power source, negative currents are for sinks.

System Allocated Power

Y 25 vars) @SN 229 watty (Port 2715 Watts) ((Port s /15 wartts) (IR 0 Watts) (EEEIERY o Watts) @BSHBNY 0 watts)

GEEEE [|

Total Allocated Power: 79.90 Watts Total Power Usage: 64.69 Watts
Power Limit: 90.0 Watts Input Power Source: Power C

System allocated power panel
Below the row of ports is a visualization of the stackup of allocated currents.
Total allocated power - sum of the allocated source power

Power limit - maximum power that can be allocated across all ports. Determined by input power
minus nominal losses, e.g. 90 W for 100 W supply

Total power usage - sum of actual power being sourced
Power limit max - set power limit for DC input when unregulated power is provided to the DC port

Input power source - input port with the highest power capability

Port power panel

Port 0
Current Power: 16.93 W Allocated Power: 26.00 W
Available Power: 26.00 W Power Limit: 105.000

VBUS Accum Power: 217464 mWh | &5 VCONN Accum Power: 3 mWh | &

Port power panel

Current power - actual port power output (positive) or input (negative)

Available power - maximum power that could be allocated to the port, not to exceed Power limit
VBus accum power - total energy sunk or sourced on VBus since reset

Allocated power - power allocated to the port, not to exceed Power limit

Power limit - power limit for the port, max 105 W

VConn accum power - total energy sunk or sourced on VConn since reset

256 Chapter 2. Software

BrainStem Reference Manual, Release 2.11.1

PD Logging tab (add-on feature)

[] [) Acroname HubTool: v2.10.1
Summary Port 0 Port 1 Port 2 Port 3 Port 4 Port 5 Control Power C System Power PD Logging
Import Clear Show Graph

Hub Time (Sec) V Port V <> V Spec V soP Y Power Y Data | ID Y/ Event Type Y Packet Type Y Msg Type

47 11145.482557

2 - - - - - - Rp3A - -

48 11145.528672 2 - - - - - - Rp15A - -

49 11145.549837 2 TX V3.0 SOP Source DFP 7 PD Packet Control Get Source Info 0xB7 0xOF

50 11145.588353 2 - - - - - - Rp3A - -

51 11145.631715 2 - - - - - - Rp15A - -

52 11145.653669 2 X V3.0 sopP Source DFP 0 PD Packet Control Get Status 0xB2 0x01

53 11145.661734 2 RX V3.0 SoP Sink UFP 3 PD Packet Extended Status 0x82 0x86 0x0(
54 11145.663672 2 - - - - - - Rp3A - -

55 11145.766971 2 - - - - - - Rp15A - -

56 11145.790333 2 TX V3.0 SOP Source DFP 1 PD Packet Extended Get Manufacturer Info 0xA6 0x83 0x0
57 11145.824871 2 - - - - - - Rp3A - -

58 11145.829320 2 - - - - - - Rp15A - -

59 11145.851615 2 TX V3.0 SOP Source DFP 2 PD Packet Data Vendor Defined OxAF 0x15 0x01
60 11145.858941 2 RX V3.0 SOoP Sink UFP 4 PD Packet Data Vendor Defined 0x8F 0x48 0x4"
61 11145.861406 2 - - - - - - Rp3A - -

62 11145.865149 2 - - - - - - Rp3A - -

63 11145.870225 2 - - - - - - Rp15A - -

64 11145.889852 2 TX V3.0 SOP Source DFP 3 PD Packet Data Vendor Defined OxAF 0x17 0x02
65 11145.895155 2 RX V3.0 SOP Sink UFP 5 PD Packet Data Vendor Defined 0x8F 0x2A 0x4:
66 11145.895800 2 - - - - - - Rp3A - -

67 11145.899409 2 - - - - - - Rp3A - -

68 11145.904641 2 - - - - - - Rp15A - -

69 11145.923927 2 TX V3.0 SOP Source DFP 4 PD Packet Data Vendor Defined OxAF 0x19 0x0%
70 11145.928094 2 - - - - - - Rp3A - -

71 11145.929104 2 RX V3.0 SOP Sink UFP 6 PD Packet Data Vendor Defined 0x8F 0x2C 0x4:
72 11145.932033 2 - - - - - - Rp3A - -

73 11149.544223 2 RX V3.0 SoP Sink UFP 7 PD Packet Data Request 0x82 Ox1E 0x2(C
74 11149.547846 2 V3.0 Source DFP PD Packet Control Accept 0xA3 0x0B

PD logging tab view

PD logging®® is a software add-on feature enabling capture, logging, and decoding of USB PD communications
on all USB-C ports of the hub, including power negotiations and timing. At the top of the panel are logging
controls and port selection toggles.

Stop - stops logging

Import - imports a CSV log file

Export - exports a CSV log file (stop logging before export)

Clear - clears the PD log

Port toggles - select which ports to monitor (can only change toggles when logging is stopped)

Show graph - when checked, clicking on an event pops up the Port Plot graph window and highlights the cor-
responding PD packet. Clicking on a yellow PD message in the port plot highlights the corresponding message
in the log

55 https://acroname.com/store/t99-pd-log

2.1. HubTool 257

https://acroname.com/store/t99-pd-log

BrainStem Reference Manual, Release 2.11.1

[JON J USBHub3c Port Plots

4.0

20.0 [-Port-2 N

-5.0E
02:29:10 02:29:15 02:29:20
Port 3

Port 4
Port 5
Control

Power C

Graph view with highlighted PD packet

Below these controls is the PD packet log. The left axis is the row number, which resets when the log is cleared.
Columns can be filtered by clicking the filter icon (V) on the column headings:

Hub Time (Sec) v Port V <> V Spec v SOP v Power V Data ID V Event Type V Packet Type V Msg Type Raw

PD packet log headings
Time - clicking on this heading cycles among time references:
» Hub time (s) - time since the hub powered on
* App time (hh:mm:ss) - time since the HubTool App was launched
« System time (yyyy.MM.dd hh:mm:ss:zzzz) - date and time
Port - ports 0-5, Control, or Power C
<-> - message direction - RX, TX, or -’ (none)
Spec - USB PD version
SOP* - “Start Of Packet”
» SOP - for messages between source and sink
» SOP’ - for messages to the cable connector closest to the downstream-facing port (DFP)
» SOP” - for messages to the cable connector closest to the upstream-facing port (UFP)
Power - sink, source, none
Data - UFP, DFP, -’
ID - message ID, (0 - 7), increments with each new message. Acknowledgements should match message ID
Event type - description of the event
Packet type

258 Chapter 2. Software

BrainStem Reference Manual, Release 2.11.1

» Control - short messages that typically require no data exchange

» Data - messages contain data objects that are transmitted between devices

» Extended - data messages with larger data payloads

Message type - description of message

Raw - raw PD message (hexadecimal)

USBHub3p

[] @ Acroname HubTool: v2.10.1
System Info Upstream Downstream
Model: USBHub3, . 2
. D Auto Mode Port 0 Relavilo ms 4
Serial Number: o ~
Firmware Version: 2101 Boost 0%
" Boost 0%
Accumulated Uptime: 1187h56m Auto VBus Toggle
Input Voltage: 121V (0.8 A)
. . Commands
System Temperature: 40.0°C (max: 565.0°C)
Polling Delay: 20 $ ms Refresh: 9.8Hz Save Port States Reset
Ueariidy Log Events Clear Errors
Hub Name: [, My Acroname Hub?
[4, Port 0 [4, Port 2 [4, Port 4 [4, Port 6
Port Port Port Port
@ @Data @Hs @ss @ ®@Data @Hs @ss @ ®Data @Hs @ss @ @ Data @Hs @SS
@ 4 Power @ M Power @ M Power @ 2 Power
4095 CmA 4095 CmA 4095 C mA 4095 CmA
CDP Mode CDP Mode CDP Mode CDP Mode
— 4.924V 5.096 V 5.096 V 5.096 V
1.294 A 0.000 A 0.000 A 0.000 A
[@ Port1 [Port3 [Port5 [@ Port7
Port Port Port Port
@ @pata @Hs @ss @ @Data @Hs @ss @ @Data @Hs @ss @ @ Data @Hs @SS
@ 9 Power @ @ Power @ @ Power @ 9 Power
4095 CmA 4095 CmA 4095 CmA 4095 CmA
CDP Mode CDP Mode CDP Mode CDP Mode
5.096 V —5.096 V 5.096V — 5.09V
0.000 A 0.000 A 0.000 A 0.000 A

USB discovery: Enabled

BrainStem aEther discovery: Enabled

TCPIP discovery: Disabled
Port Mapping: Enabled

Device Type: | Serial Number: | <->

USBHub3p I

Select a device to initiate a connection -------------- >
2023.11.09 11:43:02:614: Successfully connected to USBHub3+
Firmware Management

The USBHub3p®® is a programmable USB hub with 8 full-featured 5 Gbps USB-A ports and 1 downlink port
for daisy chaining. Two upstream ports allow automatic or manual host switching.

HubTool presents a unified dashboard to control and view state of USBHub3p.

56 https://acroname.com/store/programmable-industrial-hub-s79-usbhub-3p

2.1. HubTool 259

https://acroname.com/store/programmable-industrial-hub-s79-usbhub-3p

BrainStem Reference Manual, Release 2.11.1

General system information

[] @) Acroname HubTool: v2.10.1

System Info Upstream Downstream
Model: USBHub3 . 2

ode P Auto Mode Port 0 Do s ¥
Serial Number: f . —
Firmware Version: 2101 . Boost 0%
Accumulated Uptime: 1188h0m Boost 0% a Auto VBus Toggle
Input Voltage: . 124V (O.EiA) .
System Temperature: 40.0°C (max: 55.0°C)
Polling Delay: 20 S ms Refresh: 8.5Hz Save Port States Reset

Ly LiE Log Events Clear Errors

Hub Name: [¢, My USBHub3p

USBHub3p general system information

The upper-left panel shows general system information for the hub:

Serial number
Firmware version
Accumulated uptime
The total time the system has been powered on since leaving the factory
Input voltage (V)
System temperature (°C)
Polling delay (ms)

Sets how long to wait after receiving all information from the hub to poll again. A setting
of 0 will start a new set of requests immediately. Polling takes 50-150 ms.

Refresh (Hz)

The measured refresh rate, which is the inverse of the polling delay plus the time to
receive the data

User LED toggle

Toggles a blue LED located on the USBHub3p back panel - used for debugging and to
identify the hub

Hub name

Editable friendly name for the hub - used by HubTool and ControlRoom

Port settings and commands

USBHub3p port settings and commands

The upper-right panel shows port settings and commands:

Upstream (host) port settings:
Host select:

+ Auto mode (Port 0 if both ports connected)

Chapter 2. Software

BrainStem Reference Manual, Release 2.11.1

[] @ Acroname HubTool: v2.10.1

System Info Upstream Downstream
Model: USBHub3 - Z

ode P Auto Mode (B Port 0 LRy L Y
Serial Number: [.
Firmware Version: 2101 . ,\ Boost 0% B
Accumulated Uptime: 1188h0m Boost 0% Auto VBus Toggle
Input Voltage: . 121V (O.SGA) .
System Temperature: 40.0°C (max: 55.0°C)
Polling Delay: 20 S ms Refresh: 8.5Hz Save Port States Reset

LT LY Log Events Clear Errors

Hub Name: () My USBHub3p

 Port 0 only
» Port 1 only
» None (do not connect to either host port)

Note that the Control port (mini USB, located on USBHub3p back panel) is al-
ways accessible

Boost

Amplifies the upstream USB signal up to 12 percent to improve marginal con-
nections - default = 0

Downstream port settings:
Delay (ms)

Delays the enumeration of all downstream ports when power is enabled. Useful
if devices are slow to power on and don’t respond to enumeration in time - default
=0

Boost

Amplifies the downstream USB signals up to 12 percent to improve marginal
connections - default = 0

Auto VBus toggle

Toggles downstream port VBus when the upstream connection changes - de-
fault = on

Commands
Save port states

Saves the settings of all ports to the hub’s internal memory so that they will per-
sist through power cycling and reset. Saved states: Host select, Boost, De-
lay, Power and data toggles, Current limit, CDP mode toggle

Reset

Resets the hub - VBus toggles and hub returns to previously saved state
Log Events

Displays the last 150 log events in the console
Clear errors

Clears internal error bits

. HubTool 261

BrainStem Reference Manual, Release 2.11.1

Port view

Each of 8 full-featured downstream ports on the front panel of USBHub3p has its own interface panel in
HubTool.

LUY CVEInD wieal Civia

Hub Name: (¢, My USBHub3p

&, Port 0 (&, Port 2 & Port 4 (&, Port 6
Port Port Port Port
@ @Data @HS @ss @ @Data @Hs @ss @ @Data @HS @ss @ @Data @HS @SS
@ @ Power @ ® Power @ ® Power @ & Power
4095 CmA 4095 CmA 4095 C mA 4095 ZmA
CDP Mode CDP Mode CDP Mode CDP Mode
493V — 5088V ~— b9V — 509V
1234 A 0.000 A 0.000 A 0.000 A
& Port1 & Port 3 & Port 5 & Port 7
™2 port ¥ Port ¥ Port ¥ Port

Downstream port view
Port name

Editable “friendly” name for the port that is displayed in HubTool and ControlRoom interfaces
Power and data toggles

Toggle name Enables and disables

Port Entire port

Data All Data

HS USB 2 (High Speed) pins
SS USB 3 (Super Speed) pins
Power VBus

Virtual LEDs

These indicate the data and power status of the port and match the real LEDs on the front panel of
the hub.

Attribute Status LED color
Datarate USB2 Yellow
UsSB 3 Green
USB2,USB3 Green
VBus Powered Red
Off Black

Current limit

262 Chapter 2. Software

BrainStem Reference Manual, Release 2.11.1

Maximum current that the hub will supply - default = 4095 mA
CDP mode toggle

Enables Charging Downstream Port modes (default = on). The port will signal the attached device
to draw up to a maximum current based on this table:

Table 19: Port power modes

CDP mode Condition Port mode Maximum current
toggle (device limited)*
On Hostpresentand USB2data CDP 1500 mA
lines enabled
No host present and USB 2 DCP (Device Charg- 5000 mA
data lines enabled ing Port) mode
Off No host or no USB 2 data SDP (Standard 100 mA
lines connected Downstream Port)
Host presentand USB 2 data 500 mA
lines enabled

* The hub limits current to current limit, up to a maximum of 4000 mA
Voltage and current display

Shows a graph of the port’s bus voltage and current. Clicking on the port graph pops up a window
with a larger rolling chart of the last 32 seconds.

[} @® HubTool: Port 0
USB Voltage and Current Port 0
T T T T T T
5.40 E
@ 5.20 3
5 5.00 f—~——r——— e ~—
4.80 F
4'60 £ 1 L L 1 L L i
5 E |
23k |
g2
1k C S = = 3
h
Q Q Q
N .'\Q""D .\Qv
00 QQ QQ
Time
Log Data 267 samples Save CSV

Voltage and current strip chart and logging

Decreasing polling delay will increase the number of samples used in the chart. Selecting the “Log
Data” toggle switches the chart from rolling to expanding mode. Clicking “Save CSV” saves the
data of the graph view ina .CSV file.

2.1. HubTool 263

BrainStem Reference Manual, Release 2.11.1

Table 20: Example .CSV file output

Time (s) Port0 Voltage (V) Port 0 Current (A)

6375.647 5.104 0.000
6375.838 5.104 0.000
6376.035 5.104 0.000
6376.238 5.104 0.000
6376.432 5.096 0.000

Device descriptors

If Options > Port Mapping is selected, when a device is attached to a downstream port, its descrip-
tors will scroll at the bottom of the port panel. Click the carat () to expand:

Hub Name: |, My USBHUD3p

(&, Port O (& Por
Port Por
(O ®Data @ Hs @SS @9
@ 4 Power [[vE
4095 CmA 4095
CDP Mode col
4980V —
- ~ 0.896A
Descriptors:
VID:PID 05AC:12A8
Product: iPhone

Manufacturer: Apple Inc.
Serial Number:
ATT

@ Port 1 @ Por

Table 21: Descriptor table

Descriptor Content

VID:PID 16-bit vendor ID and 16-bit product ID
Product Product name string

Manufacturer Manufacturer name string

Product serial number Product serial number

ATT Indicates device is attached

264 Chapter 2. Software

BrainStem Reference Manual, Release 2.11.1

USBHub2x4

[] [] Acroname HubTool: v2.10.1

System Info Upstream Downstream

Model: USBHub2x4 . 2

N Auto Mode Port 1 RElay0 ms >

Serial Number: o ~

Firmware Version: 2.10.2 " — Boost 0%

Accumulated Uptime: Not Supported Boost 0%

Input Voltage: 12'2.,\/ .

System Temperature: 31.0°C

Polling Delay: 20 ms Refresh: 18.0Hz Save Port States Reset

ey Log Events Clear Errors

Hub Name: (& My Acroname Hub

& Port 0 [Port 1 & Port 2 & Port 3
Port Port Port Port

® Data ® M Data @ % Data ® M Data
@ @ Power @ @ Power @ @ Power @ 9 Power

2500 CmA 2500 CmA 2500 T mA 2500 CmA
CDP Mode CDP Mode CDP Mode CDP Mode

5.088 V 5.091V 5.068 V T 5105V
0.000 A 0.000 A 0.000 A 0.000 A

4 4 4 4

@ (] @ (]

@ (] @ (]

USB discovery: Enabled Device Type: | Serial Number: | <->
BrainStem aEther discovery: Enabled USBHub2x4 [

TCPIP discovery: Disabled

Port Mapping: Enabled

Select a device to initiate a connection -------------- >

2023.11.30 14:29:50:747: Successfully connected to USBHub2x4 Firmware Management

The USBHub2x4°’ is a 4-port software-programmable 480Mbps (USB 2.0) hub designed for demanding en-
vironments where advanced control and monitoring of USB ports is required. Two upstream ports allow auto-
matic or manual host switching.

HubTool presents a unified dashboard to control and view state of USBHub2x4.

General system information

USBHub2x4 general system information

The upper-left panel shows general system information for the hub:
Serial number
Firmware version
Accumulated uptime

The total time the system has been powered on since leaving the factory - unsupported
in USBHub2x4

Input voltage (V)
System temperature (°C)

57 https://acroname.com/store/industrial- intelligent-4-port-hub-s77-usbhub-2x4

2.1. HubTool 265

https://acroname.com/store/industrial-intelligent-4-port-hub-s77-usbhub-2x4

BrainStem Reference Manual, Release 2.11.1

[] O Acroname HubTool: v2.10.1
System Info Upstream Downstream
Model: USBHub2x4 o~ De|ay: 0Oms C
e T Auto Mode (B Port 0 o
Firmware Version: 2.10.1 . - Boost 0%
Accumulated Uptime: Not Supported Boost 0%
Input Voltage: 12.2:V P
System Temperature: 41.0°C

Polling Delay: 20 2 ms
User LED
Hub Name: [¢, My Acroname Hub

Refresh: 17.4Hz

Polling delay (ms)

Save Port States

Log Events

Reset

Clear Errors

Sets how long to wait after receiving all information from the hub to poll again. A setting
of 0 will start a new set of requests immediately. Polling takes 50-150 ms.

Refresh (Hz)

The measured refresh rate, which is the inverse of the polling delay plus the time to

receive the data
User LED toggle

Toggles a blue LED (7th from the top) visible through the slot in the cover of USBHub2x4

- used for debugging and to identify the hub.

Hub name

Editable friendly name for the hub - used by HubTool and ControlRoom

Port settings and commands

Upstream

Auto Mode Port 0

Boost 0%

Commands

[] [) Acroname HubTool: v2.10.1

System Info

Model: USBHub2x4

Serial Number:

Firmware Version: 2.10.1

Accumulated Uptime: Not Supported

Input Voltage: 12.2V

System Temperature: 41.0°C

Polling Delay: 20 Z ms
User LED

Hub Name: (¢, My Acroname Hub

Refresh: 17.4Hz

USBHub2x4 port settings and commands

Save Port States

Log Events

Downstream
Delay: 0 ms <

Boost 0%

Reset

Clear Errors

The upper-right panel shows port settings and commands:

Upstream (host) port settings:
Host select:

» Auto mode (Port 0 if both ports connected, defaults to auto after power cycle)

» Port 0 only

266

Chapter 2. Software

BrainStem Reference Manual, Release 2.11.1

» Port 1 only
* None (do not connect to either host port - no effect in USBHub2x4)
Boost

Amplifies the upstream USB signal up to 12 percent to improve marginal con-
nections - default = 0

Downstream port settings:
Delay (ms)

Delays the enumeration of all downstream ports when power is enabled. Useful
if devices are slow to power on and don’t respond to enumeration in time - default
=0

Boost

Amplifies the downstream USB signals up to 12 percent to improve marginal
connections - default = 0

Auto VBus toggle

Toggles downstream port VBus when the upstream connection changes - al-
ways on for USBHub2x4

Commands
Save port states

Saves the settings of all ports to the hub’s internal memory so that they will per-
sist through power cycling and reset. Saved states: Boost, Delay, Power and
data toggles, Current limit, CDP mode toggle

Reset

Resets the hub - VBus toggles and hub returns to previously saved state
Log Events

Displays the last 150 log events in the console
Clear errors

Clears internal error bits

Port view

Each of 4 USB 2.0 downstream ports on the front panel of USBHub2x4 has its own interface panel in HubTool.

A second row of 4 more ports are grayed out and unavailable with USBHub2x4.
Downstream port view

Port name

Editable “friendly” name for the port that is displayed in HubTool and ControlRoom interfaces

Power and data toggles

2.1. HubTool

267

BrainStem Reference Manual, Release 2.11.1

[, Port 0 &, Port 1 &, Port 2 @, Port 3

Port Port Port Port

@ @ Data @ @ Data @ @ Data @ @ Dpata

@ & Power @ & Power @ & Power @ © Power

2500 CmA 2500 CmA 2500 mA 2500 CmA

CDP Mode CDP Mode CDP Mode CDP Mode

R 5.041V 5.082v. ~— 5.058V ~ b.o9syv
e 1.093 A 0.000 A 0.000 A 0.000 A
Descriptors: facturer: t

ATT

re re re re

Toggle name Enables and disables

Port

Data

HS (grayed out, checked)
SS (grayed out, unchecked)
Power

All Data

VBus

Entire port

USB 2 (High Speed) pins - always enabled
USB 3 (Super Speed) pins - not available on USBHub2x4

Current limit

Maximum current that the hub will supply - default = 2500 mA

CDP mode toggle

Enables Charging Downstream Port modes (default = on). The port will signal the attached device
to draw up to a maximum current based on this table:

Table 22: Port power modes

CDP mode Condition

toggle

On Host present and USB 2
data lines enabled

Off No host or no USB 2 data

lines connected
Host present and USB 2
data lines enabled

Port mode Maximum current (de-
vice limited)*

CDP (Charging 1500 mA

Downstream Port)

SDP (Standard 100 mA

Downstream Port)
500 mA

* The hub limits current to current limit, up to a maximum of 2500 mA

Voltage and current display

Shows a graph of the port’s bus voltage and current. Clicking on the port graph pops up a window
with a larger rolling chart of the last 32 seconds.

268

Chapter 2. Software

BrainStem Reference Manual, Release 2.11.1

() @ HubTool: Port 0
USB Voltage and Current Port 0
T T T T
5.40 =
@ 5.20 - <
e e e e e e
4.80 4
460 | | I | | L |
5E T T T T T 7
23F j
g2 E
Tk S s ; |
| I f
Q Q Q
'\Q{L .'\6"5 N
Y S S
Time
Log Data 267 samples Save CSV

Voltage and current strip chart and logging

Decreasing polling delay will increase the number of samples used in the chart. Selecting the “Log
Data” toggle switches the chart from rolling to expanding mode. Clicking “Save CSV” saves the
data of the graph view in a .CSV file.

Table 23: Example .CSV file output

Time (s) Port 0 Voltage (V) Port 0 Current (A)

6375.647 5.104 0.000
6375.838 5.104 0.000
6376.035 5.104 0.000
6376.238 5.104 0.000
6376.432 5.096 0.000

Device descriptors

If Options > Port Mapping is selected, when a device is attached to a downstream port, its descrip-
tors will scroll at the bottom of the port panel. Click the carat () to expand:

—_— [P

CDP Mode
— 5.031V
e - 1151A
Descriptors:
VID:PID 05AC:12A8
Product: iPhone

Manufacturer: Apple Inc.
Serial Number:
ATT

2.1. HubTool 269

BrainStem Reference Manual, Release 2.11.1

Table 24: Descriptor table

Descriptor Content

VID:PID 16-bit vendor ID and 16-bit product ID
Product Product name string
Manufacturer Manufacturer name string
Product serial number Product serial number
ATT Indicates device is attached
USB-C-Switch

o @ Acroname HubTool: v2.10.4

System Information

SN: Voltage: 5.1VDC Hardware Offset: 0

Model: USBCSwitch (21) Current: 0.0 A Router: 6

Firmware: 2.10.4 Temperature: 0C SW Offset: 0 0o°l

Module: 6 Device Name: (& My Device Name

Save Reset LED

Port MUX CH Output Enable
e Channel: ch.0 @
Vbus
4.953V
e Vbus 0 4.772v
— S
R 1.988A
Vbus 1 0.000V
Data
HSA HSB ss1 $S2
Vbus 2 0.000V
usB-C
@cct ||/ 1.636V
@cer b
Ij Uiy
0.001A MUX Configuration
MUX Config: Default (]
cc2 0.005V VBUS
USB2A
-0.001A USB2B
Alt. Mode USB3A
BrainStem 12C discovery: Disabled Device Type: | Serial Number: | <->
USB discovery: Enabled USBCSwitch ¢
BrainStem aEther discovery: Enabled
TCPIP discovery: Disabled
Port Mapping: Enabled -
Select a device to initiate a connection =-==----------: > Firmware Management

58 HubTool interface for
USB-C-Switch

Acroname’s USB-C-Switch®? is an industrial USB-C switch able to connect one of up to four devices to a host,
or one device to one of up to four hosts. It is not a hub - the selected ports form a bidirectional connection and
appear “like a cable” to connected devices, even supporting USB alt modes like DisplayPort.

When combined with an Acroname Universal Orientation Cable®® , the USB-C-Switch can emulate a cable flip,
allowing tests of all the connections on a port without the need to manually flip the cable.

HubTool presents a unified dashboard to control and view the state of USB-C-Switch.

58 https://acroname.com/store/programmable-industrial-switch-s85-rdvr-usbcsw
59 https://acroname.com/store/programmable-industrial-switch-s85-rdvr-usbcsw
60 https:/acroname.com/store/c67-usbc-uoc

270 Chapter 2. Software

https://acroname.com/store/programmable-industrial-switch-s85-rdvr-usbcsw
https://acroname.com/store/programmable-industrial-switch-s85-rdvr-usbcsw
https://acroname.com/store/c67-usbc-uoc

BrainStem Reference Manual, Release 2.11.1

Connections

Control Control computer running HubTool
Common Common host or Common device
Ports 0 -3 Switched devices Switched hosts

System information

[) @ Acroname HubTool: v2.10.4

System Information

SN: Voltage: 5.1VDC Hardware Offset: 0

Model: USBCSwitch (21) Current: 0.0A Router: 6
Firmware: 2.10.4 Temperature: 0C SW Offset: 0o 02

Module: 6

. . y .
Device Name: (¢, My Device Name Save Reset LED

The System Information panel contains information and settings for the switch.

Heading Meaning

SN

Model
Firmware
Module
Voltage
Current
Temperature
Hardware off-
set

Router
Software off-
set

Save

Reset

LED

Switch serial number

Switch model name and number, e.g. USBCSwitch (21)
Currently installed firmware version

Address of the module on the Brainstem network

Voltage at the input power source port

Input current at the Control port

System temperature

Increments Brainstem module address by a hardware setting - fixed to 0 in USB-
C-Switch

Address of the routing Brainstem module

Increment the module address. Requires Save and Reset

Store select changed settings

Soft reset of the switch

Toggles blue user LED next to the control port, used for debugging and to iden-
tify the switch

2.1. HubTool

271

BrainStem Reference Manual, Release 2.11.1

Common port controls

[JCN Acroname HubTool: v2.10.4
System Information
SN: 0x6B10667F Voltage: 5.1VDC Hardware Offset: 0
Model: USBCSwitch (21) Current: 0.0A Router: 6
Firmware: 2.10.4 Temperature: 0 C SW Offset: 0o 02
Module: 6 i : & i
Device Name: [¢] My Device Name Save Reset LED
Port MUX CH Output Enable
il Channel: Ch.0
Vbus
4.813V
K Vbus 0 4.652v
2.932A
Vbus 1 0.000v
Data
HSA HSB ss1 §s2
Vbus 2 0.000V
UsB-C
cl 1687V 1 yous 3 0.000v
0.000a | MUX Configuration
MUX Config: | Default
cc2 0.000V | VBUS
USB2A
-0.001A USB2B
Alt. Mode USB3A
SBU
USB3B
SBU1 0.078V
cc1
cc2
.078V
SBU2 0.078' SBU
USB 3.1 Enabled
Cable Flip
Equalizer
USB 2.0
Transmitter Config Receiver Config
40mv (<] Level 1
USB 3.0
Transmitter Config
Mux +1db, Common +0db @ 900mV
Receiver Config: Com Receiver Config: Mux
Level 1 Level 1

The left side of HubTool shows controls and
+ Enabling and disabling individual lines

Keep-alive charging

Alt mode

Cable flip

Equalization (redriver version only)

attributes related to:

Viewing voltage and current on VBus, CC1, CC2, SBU1, SBU2

272

Chapter 2. Software

BrainStem Reference Manual, Release 2.11.1

Power

Port

Power

Vbus
KAC

4.813V

2.932A

Port toggle - enables and disables all lines connecting the Common port to the selected mux
channel

» VBus toggle - enables and disables VBus lines

KAC toggle - enables Keep-alive charging (KAC)

Keep-alive charging helps keep battery-powered devices on the non-selected mux
ports charged. When enabled, the KAC circuit connects power from the control port
VBus to all non-selected mux channel VBus lines. See the API reference®' for more
detalil

VBus voltage and current plots - shows voltage and current for VBus. Click to pop up the
Voltage and Current plot window

Data line toggles

Data
HSA HSB SS1 SS2

Data toggle - enables and disables all USB data lines

HSA, HSB, SSA, SSB toggles - enable and disable USB 2 (HS) and USB 3 (SS) data lines
on side A or side B independently

cC

USB-C toggle - enables and disables CC and SBU lines
CC toggles - enable and disables CC1 and CC2 lines independently

CC1 and CC2 voltage and current plots - shows voltage and current for CC1 and CC2.
Click to pop up the Voltage and Current plot window

61 https://acroname.com/reference/devices/usbcswitch/functionality.html#keep-alive-charging-kac

2.1. HubTool 273

https://acroname.com/reference/devices/usbcswitch/functionality.html#keep-alive-charging-kac

BrainStem Reference Manual, Release 2.11.1

USB-C
cc1 1.687V
0.000A
cc2 0.000V
-0.001A

Alt mode
Alt. Mode

SBU
SBU1 0.078V
SBU2 0.078V

USB 3.1 Enabled

+ SBU toggle - enables and disables SBU lines. Used for Alternate Mode discovery, negotia-

tion, and configuration data exchange

+ SBU1 and SBU2 voltage and current plots (redriver model only) - shows voltage and
current for SBU1 and SBU2. Click to pop up the Voltage and Current plot window

» DisplayPort alt mode configuration menu (redriver model only)

USB 3.1 Disabled

4 Lane DP Com Side to Host

4 Lane DP Mux Side to Host

2 Lane DP Com Side to Host with USB 3.1

2 Lane DP Mux Side to Host with USB 3.1

2 Lane DP Com Side to Host with USB 3.1 Inverted
2 Lane DP Mux Side to Host with USB 3.1 Inverted

274

Chapter 2. Software

BrainStem Reference Manual, Release 2.11.1

Alt Mode Configuration

USB 3.1 Disabled - no SS lines connected

USB 3.1 Enabled - SS lines connected

4-Lane DisplayPort - no USB 3.1 - Host on Common Port
4-Lane DisplayPort - no USB 3.1 - Host on Mux Port

2-Lane DisplayPort + USB 3.1 —- Host on Common Port

2-Lane DisplayPort + USB 3.1 —- Host on Mux Port

2-Lane DisplayPort + USB 3.1 Inverted - Host on Common Port
2-Lane DisplayPort + USB 3.1 Inverted - Host on Mux Port

DisplayPort Alt modes use the SS lines for DisplayPort data, but change their direc-
tion. Since each redriver line can operate in only one direction at a time, the redriver
direction needs to be set to match the mode being used by the host and display. See
the API reference®? for more detail.

Cable Flip

Cable Flip

+ Cabile flip toggle - switches USB data, VConn, and SBU lines from side A to side B as if the
cable had been flipped. When using standard USB-C cables with USB-C-Switch, one cable
orientation will work, the other will need to be flipped physically, or by using the toggle.

* CC, SS, SBU, USB2 flip toggles - individually flip each connection type

To enable automated cable flips for testing, use one Universal Orientation Cable®® for either the
host or mux connection, and one standard cable for the other connection.

Equalizer (requires redriver model)

The equalizer section provides controls to set transmitter and receiver gains for USB 2 and USB 3
data lines in both directions.

USB 2.0

» Transmitter config - selects the amount of DC boost applied to USB 2.0 (HS) signals. USB Low Speed
and Full Speed signals are unaffected. When boost is set to O mV, the HS redriver is disabled indepen-
dent of receiver configuration

62 https://acroname.com/reference/devices/usbcswitch/entities/usb_entity.html#alt-mode-configuration-redriver-only
63 https://acroname.com/store/c44-usb-uoc

2.1. HubTool 275

https://acroname.com/reference/devices/usbcswitch/entities/usb_entity.html#alt-mode-configuration-redriver-only
https://acroname.com/store/c44-usb-uoc

BrainStem Reference Manual, Release 2.11.1

Equalizer

USB 2.0

Transmitter Config Receiver Config
40mV Level 1

USB 3.0

Transmitter Config

Mux +1db, Common +0db @ 900mV
Receiver Config: Com Receiver Config: Mux
Level 1 Level 1

USB 2.0 transmitter DC boost

40 mV - default

60 mV

80 mV

0 mV (redriver disabled)

» Receiver config - controls the sensitivity of the redriver to incoming HS signals by boosting higher
frequencies to make sharper edges. When receiver config is set to level 0, the redriver is disabled inde-
pendent of transmitter configuration

USB 2.0 Receiver Equalization

Level 1 - moderate boost - default
Level 2 - higher boost
Level O - redriver disabled

USB 3.0

» Transmitter config - selects preset combinations of transmitter gains for each direction of the full-duplex
USB 3 (SS) data lines, and peak-to-peak voltage for both directions

Mux Side Common Side Range

1db 0db 900 mVpp default
0db 1db 900 mVpp

1db 1db 900 mVpp

0db 0db 900 mVpp

0db 0db 1100 mVpp

1db 0db 1100 mVpp

0db 1db 1100 mVpp

2db 2db 1100 mVpp

0db 0db 1300 mVpp

276 Chapter 2. Software

BrainStem Reference Manual, Release 2.11.1

* Receiver config: com - sets the sensitivity of the redriver to incoming SS signals on the com side by
boosting higher frequencies to make sharper edges. Level 1 (lowest boost, default) to Level 16 (highest)

» Receiver config: mux - sets the sensitivity of the redriver to incoming SS signals on the mux side by

boosting higher frequencies to make sharper edges. Level 1 (lowest boost, default) to Level 16 (highest
boost)

Mux port controls

[] @ Acroname HubTool: v2.10.4
System Information
SN: 0x6B10667F Voltage: 5.1VDC Hardware Offset: 0
Model: USBCSwitch (21) Current: 0.0A Router: 6
Firmware: 2.10.4 Temperature: 0C SW Offset: 0o 02
Module: 6 i : [i
Device Name: [¢] My Device Name Save Reset LED
Port MUX CH Output Enable
:’Wer Channel: Ch.0
& Vbus
4.813V
KAC Vbus 0 4.652V
2.932A
Vbus 1 0.000V
Data
HSA HSB [ss1 $s2
Vbus 2 0.000V
USB-C
el 1687V | Vs 3 0.000v
0.000a | MUX Configuration
MUX Config: Default
cc2 0.000vV | VBUS
USB2A
-0.001A USB2B
Alt. Mode USB3A
SBU
USB3B
SBU1 0.078V
cc1
Ccc2
SBU2 0.078V SBU
USR 21 Fnahled

The right side of HubTool shows controls and attributes related to the mux ports.

Mux channel control

» Mux channel output enable - toggles the output of the selected port

+ Mux channel selector - designates one mux port to connect to the Common port. Unavailable in Chan-
nel priority and Split configuration

» VBus voltage plots - shows VBus voltage for each mux port. Click the graph to pop up the Voltage and
Current plot window

2.1. HubTool 277

BrainStem Reference Manual, Release 2.11.1

Mux configuration

» Default - switches all enabled USB-C lines to the single mux port designated by the channel selector

» Channel priority - auto-selects the lowest-numbered mux port that has VBus present. Allows simple
automatic host selection (requires USB A-to-C cables)

 Split - allows each signal type to be independently connected to a mux port. VBus and CC lines can
be assigned to any combination of ports, while USB2, USB3, and SBU can be assigned to a single mux
port. See the AP reference®* for more detail

Voltage and current plot window

[]
MUX Ch1 Vbus Voltage
MUX Ch2 Vbus Voltage

USB-C-Switch Voltage and Current

20.000
4.000

15.000 2.000

COM SBU 2 Voltage

10.000 0.000

Voltage (V)
(v) uaung

-2.000
5.000

-4.000

0.000 —

01:08:00

01:07:50 01:07:55

Time

AutoScroll Logging Selected: None Axis Control: Y Axis Left (2]

Save CSV

The voltage and current plot window pops up when any of the traces in the main window are clicked.
» Trace select toggles - show and hide each trace
+ Autoscroll - scrolls automatically. When enabled, the right edge is “now” - default = on
* Logging - when enabled, data is stored beyond the current plot view

Axis control - sets whether dragging and scrolling zoom affect the voltage, current, or time
axis

+ Save CSV - saves data for each non-hidden trace as an independent CSV file. If logging is
not enabled, only the data visible in the graph is saved

64 https://acroname.com/reference/devices/usbcswitch/functionality.html#mux-split-mode

278 Chapter 2. Software

https://acroname.com/reference/devices/usbcswitch/functionality.html#mux-split-mode

BrainStem Reference Manual, Release 2.11.1

2.2 BrainD

(E==2)

(E==2)

E==2

N

BrainD is a server application that provides simultaneous multi-client access and control to Acroname devices
connected to a host computer. Connected devices can be accessed without drivers via any intranet or internet
connection, including tunneling over VPNs. Using a standard HTTP request interface, BrainD serves a REST-
Ful API that provides telemetry and status information on the entire USB tree. BrainD builds upon decades of
experience from successfully deploying complex test and measurement systems, conference room solutions,
and artificially intelligent robotic applications.

2.2.1 Installation

Procedure

Please ensure you have appropriate privileges on your computer and back up any critical data to prevent data
loss during the upgrade process.

1.
1.

I

Download latest software release.

Navigate to the Acroname Download Center®®.

Choose the appropriate software for your operating system and click the link to initiate the download.

If prompted to choose a download location, select a place that is easily accessible.

Wait for the download to complete.

Installation of BrainD

1.
1.
2.
3.

4.
2.

Windows:
The downloaded file will be a setup .exe file. Open the .exe file to run the program installer.
If BrainD is already installed, the installer will prompt to uninstall the existing version.

Follow the installer prompts to accept the license and select the application installation direc-
tory.

Open BrainD from the Start Menu or Windows Explorer.
macOS

65 https://acroname.com/software/braind

2.2. BrainD

279

https://acroname.com/software/braind

BrainStem Reference Manual, Release 2.11.1

—_

w w N

Linux

1. The downloaded file will be a .deb installer package.

Open BrainD from the Applications folder.

Drag the BrainD application into the Applications folder inside the disk image

. The downloaded file will be a .dmg disk image. Open the .dmg file to mount the disk image.

2. Ina command line, run sudo dpkg —i <image file>.deb. This will install the

BrainD application.

Note: If dependencies are missing, the above command may fail. Run sudo apt-get
-f install toinstall the dependencies, then re-run the previous install command.

3. After installation, open BrainD from the applications selector or from the command

line.

Note: On Linux, the api/v1/devices REST endpoint may not enumerate all devices on the system if the

user does not have write permissions to /dev/bus/usb.

Software Requirements

Web Browsers

The following web browsers are supported for accessing and using the web-based application:

Table 25: Supported Web Browsers

Windows

macOS

Linux

Android

Browser Version
Safari Latest stable
Brave Latest stable

Microsoft Edge Latest stable
Google Chrome Latest stable
Mozilla Firefox Latest stable

Yes
Yes
Yes
Yes
Yes

Yes
Yes
Yes
Yes
Yes

Yes
Yes
No

Yes
Yes

Yes
Yes
No

Yes
Yes

No
Yes
No
Yes
Yes

Operating Systems

BrainD application is compatible with the following operating systems:

280

Chapter 2

. Software

BrainStem Reference Manual, Release 2.11.1

Table 26: Supported Operating Systems

Operating System Version BrainD ControlRoom
Windows (x86/x86_64) 10 Yes Yes
11 Yes Yes
macOS (Intel/Apple Silicon) 10.15 Yes Yes
11.x Yes Yes
12.x Yes Yes
13.x Yes Yes
Linux (x86_64) Ubuntu 20.04 LTS Yes Yes
Ubuntu 22.04 LTS Yes Yes
Linux (arme64) Ubuntu 20.04 LTS Yes Yes
Linux (armhf) Debian Bullseye Yes Yes

Please note that while our web-based application may function on earlier versions of the mentioned operating
systems, we strongly recommend using the specified minimum versions for optimal performance, security, and

compatibility.

2.2.2 Quick Start Guide

To get started with BrainD, follow these steps:

1. Install BrainD following the Installation Guide.

2. Connect an Acroname product with a valid Software License installed. For this guide, a USBHub3c will

be used, with serial number F7A9DFC6.

3. Start BrainD by selecting it in the Start Menu under “Acroname” (Windows) or from the Applications

directory (Mac). An icon will appear in the system taskbar.

4. The BrainD service is now running. The RESTful APl is available at http://127.0.0.1:9005. See
the following sections for example usage. Additional examples are in the documentation for each RESTful

endpoint.

GET Example - Get Version

The version of software that is running can be read by issuing a GET request to the version endpoint.

Bash

[curl —-H 'Accept: application/json' http://127.0.0.1:9005/api/vl/version

Python

import requests
import json

response = requests.get ('http://127.0.0.1:9005/api/vl/version')

json_data = response.json ()
print (json.dumps (json_data, indent=3))

The resulting return of the version will return the following JSON body.

2.2. BrainD

281

ENEEEAREN N

o

ENEEARN N

o

BrainStem Reference Manual, Release 2.11.1

{
"braind": {
"version": {
"major": 1,
"minor": O,
"patch": O
}I
"buildDate": "Thu Aug 24 13:58:24 2023",
"buildHash": "d38f0aldd5f8daa2c8cd0al0170fee8210d1356b4"
}I
"brainstem": {
"version": {
"major": 2,
"minor": 10,
"patch": 0
}I
"buildDate": "2023-09-08T19:03:102",
"buildHash": "7af9c07e44601d6987fe3dab0ea201a13609683e"
I3
}

PUT Example - Set BrainStem Port Off

BrainD is designed to manage and manipulate Acroname products through the RESTful API
Bash

-

curl -X PUT http://127.0.0.1:9005/api/vl/brainstem/F7A9DFC6/port/1/enabled -H
«'Content-Type: application/json' -d '{"value": 0}'

.

Python

-
import requests

import json

response = requests.put ('http://127.0.0.1:9005/api/vl/brainstem/F7A9DFC6/port/1/
wenabled', json={'value': 0})

json_data = response.json ()

\print(json.dumps(json_data, indent=3))

The resulting return of the version will return the following JSON body.

-

{
"timestamp": "2023-09-18T04:43:09.813z",
"request": {
"endpointName": "/api/vl/brainstem/F7A9DFC6/port/1l/enabled",
"parameters": {
"value": O
}
}I
"response": {}
}

282 Chapter 2. Software

BrainStem Reference Manual, Release 2.11.1

GET Example - Get BrainStem Port 2 Vbus Voltage

Bash

[curl http://127.0.0.1:9005/api/vl/brainstem/F7A9DFC6/port/2/VbusVoltage }

Python

import requests

import json

response = requests.put ('http://127.0.0.1:9005/api/vl/brainstem/F7A9DFC6/port/2/
<VbusVoltage')

json_data = response.json ()

print (json.dumps (json_data, indent=3))

"timestamp": "2023-09-18T04:56:16.639Z",

"request": {
"endpointName": "/api/vl/brainstem/F7A9DFC6/port/2/VbusVoltage",
"parameters": {}

}I

"response": {

"value": 5100097,
"rawValue": 5100097

2.2.3 Usage

Endpoint Parser
- REST API
- Web Apps

BrainStem Device
Manager

BrainD has multiple methods of interface and interacting with a consumer or client. A host processor must host
the BrainD service for endpoints and user applications to run. The BrainD service will inherently manage all links
to BrainStem devices that are connected to the host processor with the use of aEther. Also, BrainD service
creates specific RESTful endpoints for connected devices, bulk data endpoints, and web based application
endpoints.

2.2. BrainD 283

BrainStem Reference Manual, Release 2.11.1

Background Service

BrainD user interface application enables simple configuration and manipulation of the application service.

Taskbar

"

e—‘ " BrainD Service Running > BESEL:
Stop
e——— Preferences
Restart
o—_ Show URLs
e———Quit BrainD

Table 27: Taskbar Details

Item Description

A Application icon.

B BrainD operation status. A green indicator shows the service is running. A red indication shows the
service is stopped and no application connections or updates will be available.

Opens the settings and configuration dialog.

Close and quit the BrainD service.

Start the BrainD service.

Stop the BrainD service.

Restart the BrainD service. All active connections will be terminated.

I OTMmOoO

Command Line

For headless servers, starting as a system service, or as part of a larger solution, BrainD may be directly run
from a command line, without the use of the taskbar GUI application.

The list of command line arguments may be found with the —-—he1p argument:

£$ braind_service —--help]

BrainD Version 1.0.0
Service providing a REST interface to Acroname BrainStem devices

Application Usage:
(continues on next page)

284 Chapter 2. Software

BrainStem Reference Manual, Release 2.11.1

(continued from previous page)

braind_service [-f <filename>]... [-d <json object>]

Parameters:

=h, ==help — Show full help message

-v, —-version — Show version information

—-f, ——config-file <file> — Specifies any additional configuration files

that override the default setting. May be
specified multiple times for multiple files.

-d, —--config-data <json> — JSON Object containing configuration to
override the default settings

The - £ flag is used to specify an additional configuration file that will be read, and this may be specified multiple
times.

The -d flag allows a JSON configuration object to be passed directly to the service, which will take priority over
all configuration files.

The details of the configuration is documented in Configuration.

Examples

For endpoint usage examples, please refer to the RESTful API section which will have additional information.

2.2.4 Security

SSL Certificates

SSL (Secure Sockets Layer) is a fundamental technology for securing web applications by encrypting data,
ensuring data integrity, authenticating servers, and enhancing user trust.

SSL layers encrypt the data transmitted between a user’s web browser and server. This encryption ensures
that the data remains unreadable and secure even if intercepted by malicious actors. SSL includes mecha-
nisms to ensure data integrity during transmission using cryptographic hash functions to detect unauthorized
modifications or tampering. In the event of altered data during transit, the recipient can see and reject the
modified data.

BrainD allows loading a user’s SSL certificate through the settings and configuration dialog. Many external
service providers can provide an SSL certificate; one may already have an SSL certificate for BrainD installa-
tions.

Use of a self-signed certificate may cause a warning to appear when accessing the REST endpoints. This is
caused by the browser failing to authenticate the received certificate against a trusted certificate authority.

2.2. BrainD 285

BrainStem Reference Manual, Release 2.11.1

& This Connection Is Not Private

This website may be impersonating “127.0.0.1" to steal your personal or financial information.
You should go back to the previous page.

Go Back

Safari warns you when a website has a certificate that is not valid. This may happen if the
website is misconfigured or an attacker has compromised your connection.

To learn more, you can view the certificate. If you understand the risks involved, you can visit
this website.

OpenSSL is an option that one can use to create a self-signed SSL certificate. The following command may
be used to generate a self-signed certificate:

Bash

[openssl req —new -x509 -days 365 -nodes -keyout example.key -out example.crt }

By default, BrainD will serve an insecure web page over HT TP, without any certificates or encryption. Ifinsecure
communications over HTTP are not desirable, the settings and configuration dialog can be used to enable
HTTPS/SSL communication. If a certificate is not specified, then BrainD will automatically generate a self-
signed certificate.

Certificates are stored in the following directory:
1. Windows: %$AppData%\Acroname\BrainD\config
2. Mac: ~/Library/Application\ Support/Acroname/BrainD/config

3. Linux: ~/.acroname/BrainD/config

2.2.5 Configuration

Preferences

To change the default settings of BrainD, the desktop application provides a simple dialog window that enables
users to change the HTTP server settings and specify SSL/TLS Certificates. To open the dialog, click on the
taskbar menu and select “Preferences”.

The following diagram lists the available configuration options in the Settings dialog:

286 Chapter 2. Software

BrainStem Reference Manual, Release 2.11.1

Restore Defaults Cancel

® @ ControlRoom Settings

Config File(s): Select _G

07 Server Address: 127.0.0.1
Server Port: 9005 °

eiEnabIe SSL:

SSL Certificate: Select —e
SSL Key: Select —°
—©0

IR

Table 28: Preferences Details

Iltem Description

Default server address. Default is 127.0.0.1, which will allow connection from external devices.
Enable SSL/TLS on client connections.

Restore configuration settings to factory defaults.

Close the preferences window without saving.

Optional path to a JSON Configuration File.

Server port to bind to for clients. Default is 9005.

SSL/TLS Certificate (.crt) file. If not specified, a self-signed cert will be generated.

SSL/TLS Key (.key) file. If not specified, a self-signed cert will be generated.

Save application settings.

T IOTMMOOT>

2.2. BrainD 287

BrainStem Reference Manual, Release 2.11.1

Configuration Files
BrainD allows for more fine-grained control of the backend service through the use of JSON configuration files.
This configuration includes settings for logging, polling rates, and web server configuration.
The BrainD service will read the following configuration file for the current operating system:
1. Windows: $AppData%\Acroname\BrainD\config\config.json
2. Mac: ~/Library/Application Support/Acroname/BrainD/config/config.json
3. Linux: ~/.acroname/BrainD/config/config. json

Each entry in the config. json file will be merged into the default configuration object, overriding each field
thatis listed. In addition, if any configuration files are specified in the “Config File(s)” entry of the Settings menu,
these files will be read and merged as well. The default configuration object is defined as the following:

{
"logging": {
"loggers": {
"default": "debug"
}I
"sinks": {
"consoleSinks": [
{
"enable": true,
"level": "debug",
"enableColors": true,
"colorPattern": "\uOO1B[Om[\uOO1B[32m%Y—-%m-%d
u001B[0m] [%$7%1%$] [\uOO01B[35m%n\ul001B[0m:\u001B[33m%#\u001B[0Om
"noColorPattern": "[%$Y-%m—%d $H:%M:%S] [%$1] [

"fileSinks": [
{
"enable": true,
"level": "info",
"pattern": "[%$Y-%m-%d %H:%M:%S] [%1] [Sn:%#] Sv",
"path": {

W g

win $AppData%\\Acroname\\BrainD\\log",
"mac": "~/Library/Logs/Acroname/BrainD",
"lin": "~/.acroname/BrainD/log"

}’

"baseFileName": "braind.log",

"maxFiles": 5,

"maxFileSize": 5242880

} 14
"flushInterval”: 3000

} r

"httpServer": {
"enable": false,
"address": "0.0.0.0",
"port": 9005,
"threadCount": 1

} r

"httpsServer": {
"enable": true,

(continues on next page)

288 Chapter 2. Software

BrainStem Reference Manual, Release 2.11.1

(continued from previous page)

"address": "0.0.0.0",
"port": 9006,
"threadCount": 1,
"sslCert": "",
"sslKey": ""

}I

"pollingRates": {
"acronameDevicesState": 300,
"devices": 300,
"brainstem": 1000

Note: The config['httpServer'] and config['httpsServer'] configuration objects will have no
effect if the BrainD desktop application is used. The value in the Settings dialog takes priority.

Examples

Add an additional log file output:

{
"logging": {
"sinks": {
"fileSinks": [
{
"enable": true,
"level": "info",
"pattern": "[$Y-%m—-%d $H:%M:%S] [%1] [%n:%#] Sv",
"path": {
"win": "C:\\Users\\username\\Desktop",
"mac": "~/Desktop",
"1in": "~/Desktop"
}I
"baseFileName": "custom-log-file.log"
3
1
}
}
}

Increase the log flush rate from 3000ms to 500ms, and reduce the USB tree polling rate from 300ms to 1000ms:

{
"logging": {
"flushInterval": 3000
by
"pollingRates": {
"devices": 1000
}
}

2.2. BrainD 289

BrainStem Reference Manual, Release 2.11.1

2.2.6 Logging
BrainD generates runtime logging to aid in debugging and understanding for many events. These log files are
stored by default in the following path for each operating system:

1. Windows: $AppData%\Acroname\BrainD\log

2. Mac: ~/Library/Logs/Acroname/BrainD

3. Linux: ~/.acroname/BrainD/log

By default, these log files will rotate when they reach 5MB in size, up to a maximum of five log files. After this
point, old log files will be removed to make room for new ones.

For information on how to adjust the logging parameters or specify new log files, see Configuration.

2.2.7 Platform Specific Considerations

Configure MacOS to Advertise Its Hostname

Name resolution is a process where a readable name, e.g. E1izaPC, can be resolved into a numerical IP
address, e.g. 192.168.41.75. Name resolution eases server connections, by allowing usage of URLs like
https://ElizaPC instead of a hard-to-remember, and fragile, https://192.168.41.75.

MacOS, in default configuration, doesn’t provide resolution for the host’'s own name.
Here’s how to fix that.

1. Get to System Preferences via the Apple Menu in the top left of the screen.

Top Left of the Screen

0 @ Finder File Edit View Go Window F

About This Mac

System Preferences... 1 update 9
App Store...
Recent Items >

Force Quit Finder

Sleep
Restart...
Shut Down...

Lock Screen
Log Out

2. Go to the “Sharing” Panel

290 Chapter 2. Software

BrainStem Reference Manual, Release 2.11.1

3. Enable File Sharing by checking this box. Other devices on the network can now resolve this machine’s
name. Note: File sharing does not have to remain enabled but must be enabled at least once for name
resolution.

r D
®@o® o < > i Sharing Q search

Computer Name: ElizaPC

Computers on your local network can access your computer at: Edit
ElizaPC.local

* File Sharing: Off

File Sharing allows other users to access shared folders on this computer and
allows administrators to access all volumes.

On Service

| Screen Sharing

ile Sharing
~ Media Sharing - Options...
(O Printer Sharing Shared Folders: Users:
Remote Login
9 5 Downloads 2 Read...Write ¢
|| Remote Management voe N
UJ 2: Everyone Read Only ¢
[| Remote Apple Events
[| Bluetooth Sharing
o []
Internet Sharing
Content Caching
AirPlay Receiver
+ - +
?
S

4. Configure these settings to your application’s needs. This configuration is just for pictorial example. Other
devices on the network can still resolve this machine’s name, if File Sharing was ever enabled.

2.2. BrainD 291

BrainStem Reference Manual, Release 2.11.1

2.2.8 Functionality and Features

—

. Full remote control of an Acroname device.

Telemetry and status information on the host computer’s entire usb tree.
Simultaneous access from multiple client devices.

Extends Acroname’s Brainstem protocol, the shared core of all Acroname products.

Convenient JSON response format.

o o~ w N

Mirrors the existing Brainstem interface providing users a new, convenient way to control their devices.

2.2.9 Audio-Video Conferencing Solutions

1. Peripheral Management: BrainD can efficiently handle USB peripherals such as microphones, cam-
eras, and speakers.

2. Enhanced Quality: Proper management of USB devices can lead to improved audio and video quality
during conferences. BrainD can highlight bandwidth allocation and ensure that devices and installations
work optimally.

3. Remote Diagnostics: Troubleshooting issues with connected devices becomes more straightforward
with BrainD by providing diagnostic information and assisting in resolving technical problems remotely.

2.2.10 Test and Measurement Applications

1. Flexibility: The ability to dynamically add or remove devices based on specific testing needs enhances
flexibility. Engineers can adapt their setups quickly and efficiently, responding to changing requirements
without significant disruptions.

2. Data Logging and Analysis: BrainD can facilitate real-time data logging and analysis, allowing re-
search, development, and quality control applications to monitor measurements, perform in-depth anal-
ysis, and visualize results conveniently.

292 Chapter 2. Software

BrainStem Reference Manual, Release 2.11.1

2.3 ControlRoom

Controllers Tier 2 Tier 3 Tier 4 Tier 5 Tier 6 Tier 7

e N
@)
A5

7]

E===]
USBHub3p

Stem
2 il &
USBHub3p
Ports 4-7

N

(

Controller 1 USBHub3c N

i

My Passport
0748

USBHub3c
Stem

USBHub3p
Ports 0-3

Anker USB-C
HUB Devic...

ControlRoom is a service and web application that lets you control, monitor, and reset USB ports in connected
conference rooms through a browser. ControlRoom gives a real-time view of your system’s connected USB
devices for easy troubleshooting and to ensure correct installation. Remotely resolve issues that would normally
require a physical unplug / plug cycle.

2.3.1 Installation

To install ControlRoom, download the appropriate installer®® for your operating system.

Requirements

ControlRoom requires a supported Acroname hub with the ControlRoom add-on software feature®”:
+ USBHub3c®® - USB-C Hub with Power Delivery Analyzer + Tester
+ USBHub3p® - Programmable Industrial 8-port USB 5Gbps Hub
+ USBHub2x47° - Industrial Intelligent 4-port Hi-Speed USB Hub

66 https://acroname.com/controlroom

67 https://acroname.com/store/controlroom-feature

68 https://acroname.com/store/programmable-industrial-power-delivery-hub-s99-usbhub-3c-pro
69 https://acroname.com/store/programmable-industrial-hub-s79-usbhub-3p

70 https://acroname.com/store/industrial- intelligent-4-port-hub-s77-usbhub-2x4

2.3. ControlRoom 293

https://acroname.com/controlroom
https://acroname.com/store/controlroom-feature
https://acroname.com/store/programmable-industrial-power-delivery-hub-s99-usbhub-3c-pro
https://acroname.com/store/programmable-industrial-hub-s79-usbhub-3p
https://acroname.com/store/industrial-intelligent-4-port-hub-s77-usbhub-2x4

BrainStem Reference Manual, Release 2.11.1

Supported operating systems

ControlRoom binaries are available for the following platforms:
» Windows 10 and higher
* Intel and Apple Silicon Macs running macOS 10.15 or higher
 Linux:
— x86_64 Ubuntu LTS 20.04, 22.04
— arm64v8 Ubuntu LTS 20.04
— armhf Debian Bullseye

While ControlRoom may work on earlier OS versions, support is limited to the listed versions.

Supported browsers

The ControlRoom web application supports the latest stable versions of Safari, Brave, Edge, Chrome, and
Firefox.

Install and launch

Windows
» Open the downloaded .exe file to launch the installer
+ Click “Run” in the security popup

+ Follow the installer prompts to accept the license

Configuration Options
Choose options for configuring your machine

In order to properly populate the USB tree viewer; ControlRoom requires USB Suspend to be
disabled. USB Suspend is a power saving feature that puts USB devices to sleep when they are
not in use. Disabling USB Suspend will result in more power consumption when USB devices
are connected.

Disable USB Suspend for power adapter rules (AC power).
(") Disable USB Suspend for battery power rules.

< Back Next > Cancel

 To reliably view the USB tree, follow the prompt to disable USB suspend
« Choose an install location and start menu folder
Mac

» Open the downloaded .dmg disk image file

294 Chapter 2. Software

BrainStem Reference Manual, Release 2.11.1

+ Drag the ControlRoom app into the applications folder inside the disk image

[XN) 2| controlRoom-1.1.0

.« ACRONAME

=1 —

——)
=2

ControlRoom Applications

Linux
» The downloaded file will be a .deb software package

* Ina command line, run sudo dpkg -i <image file>.deb to install the ControlRoom
application

Note: If dependencies are missing, the above command may fail. Run sudo apt—-get -f
install toinstall the dependencies, then re-run the previous install command.

« After installation, open ControlRoom from the applications selector or from the command line

Note: On Linux, the USB Tree may not enumerate all devices on the system if the user does not
have write permissions to /dev/bus/usb.

2.3.2 Usage

Getting Started

To get started with ControlRoom, first confirm that it's installed, then connect a supported Acroname device
with a valid ControlRoom License’!. This guide will use a USBHub3c"2.

Windows

« Start ControlRoom by selecting it in the Start Menu under “Acroname”

+ Acroname’s 3-dot icon (-'-) will appear in the System Tray, or in Hidden Icons

+ Right click to pop up the ControlRoom menu

71 https://acroname.com/store/controlroom-feature
72 https://acroname.com/store/programmable-industrial-power-delivery-hub-s99-usbhub-3c-pro

2.3. ControlRoom 295

https://acroname.com/store/controlroom-feature
https://acroname.com/store/programmable-industrial-power-delivery-hub-s99-usbhub-3c-pro

BrainStem Reference Manual, Release 2.11.1

* In the ControlRoom popup menu, select “Open ControlRoom” to launch the viewer in a
browser:

BrainD Service Running *
Open ControlRoom...

Preferences...

Show URLs

Quit ControlRoom

ControlRoom popup menu (Windows)

Mac

Launch the ControlRoom app from the applications folder

» Acroname’s 3-dot icon () will appear in the Mac menu bar

Click to pop up the ControlRoom menu

In the ControlRoom popup menu, select “Open ControlRoom” to launch the viewer in a
browser:

. ¥ a8

BrainD Service Running >

E)

=

=) Open ControlRoom...
Preferences...
Show URLs

Quit ControlRoom

ControlRoom popup menu (Mac)

296 Chapter 2. Software

BrainStem Reference Manual, Release 2.11.1

ControlRoom viewer web app

- ACRONAME

ControlRoom

USB Tree

Controllers Tier 2 Tier 3 Tier 4

Tier 5

Tier 6 Tier7

=3
=

JSBHub3c Sten
\

USBHub3c

Controller 1

USBHub3c/

Serial Number:

Compare USB Tree

Upstream Port Selection
Mode: Manual

Port 0 Port 1

Port 2

Port 3

Port 4

Port 5

RN
oY

5 Gbps @

Upstream
Host Device

ControlRoom view with one USBHub3c with no attached devices

The ControlRoom viewer web app shows the USB tree and po
device.

rt control panels for each connected Acroname

Note: If ControlRoom is configured to use HTTP Secure, a warning may pop up if using a self-signed certifi-

cate. Select show details and “visit this website” to continue.

N This Connection Is Not Private

This website may be impersonating “127.0.0.1" to steal your personal or financial information.
You should close this page.

Show Details Close Page

2.3. ControlRoom

297

BrainStem Reference Manual, Release 2.11.1

USB tree

The top of the page contains the USB Tree section. This section shows all of the USB devices connected to
the system, as well as the hierarchy of the devices. The tree will continuously update as devices are connected

and disconnected. See the USB Tree section for more information.

In this example, USBHub3c is the hub, USBHub3c Stem is a microcontroller responsible for controlling the hub

and communicating with ControlRoom. If a box shows “2” and “3” (@_), then the device is connected to
the host via both USB 2 and USB 3. If just a “2” is showing (@), the device is only connected via USB 2.

USB Tree
Controllers Tier 2 Tier 3
/ N/ N/
2 _ lso
; A ©
/ iPhone
USBHub3c N :2
NS
==
JSBHub3c Sten
) S—
Controller 1
N—/
AN AN

-
[Eomssorer]

Compare USB Tree J

USB tree with an iPhone connected

To demonstrate, connect a USB Device into USBHub3c Port 1. It will appear in the tree as a child of the
USBHub3c. For this example an iPhone is connected, and the device icon shows that it is connected by USB
2 and the “ISO” mark indicates that it it capable of isochronous transfers such as streaming video and audio.

298

Chapter 2. Software

BrainStem Reference Manual, Release 2.11.1

Port control panel

USBHub3c/

Serial Number:

Upstream Port Selection

Upstream
Host Device

) Port 0 fl Port 1 § Port 2 § Port 3 @ Port 4 @ Port 5
Mode: Manual
Port O Port 1 Port 2 Port 3 Port 4 Port 5

Y

5 Gbps @

480 Mbps()

Apple Inc.
iPhone

Port control panel for USBHub3c with an iPhone connected

Below the USB Tree are panels representing each connected Acroname device. This section allows a user to
power ports on and off, view attached devices, and more. See the Port Control section for more information.

vioue: ividiiudi

t0

%)

Port 1

Port Toggle

7o)

Por

To demonstrate, disable the device on USBHub3c Port 1 by toggling the blue enable switch. The device will
be removed from the USB Tree.

Detailed information about each connected device can be seen by clicking on the device icon below each port
power switch:

Port 1

i€l
480 Mbps

Apple Inc.
iPhone

o

Details
Current:
0.3 amperes
Voltage:
5.1volts
Power:
1.7 watts

Serial:

vID:
0x05AC
PID:

0x12A8

2.3. ControlRoom

299

BrainStem Reference Manual, Release 2.11.1

Taskbar menu

The ControlRoom background application enables simple configuration and manipulation of the application
service though a taskbar menu.

[]
P L = .
BrainD Service Running > m
- Stop
Open ControlRoom...
Restart
Preferences...
Show URLs

Quit ControlRoom

ControlRoom taskbar menu

BrainD Service [Running or Stopped] - shows whether the BrainD service that communicates with Acron-
ame devices is running:

« Start - starts the BrainD service. This is required for ControlRoom to operate

 Stop - stops the BrainD service

+ Restart - restarts the BrainD service. All active connections will terminate
Open ControlRoom - launches the ControlRoom web app in a browser

Preferences - opens the settings and configuration dialog
Show URLS - displays all broadcasted URLs that can be used to access the local ControlRoom session

Quit ControlRoom - closes and quits the ControlRoom taskbar and stops the BrainD service

300 Chapter 2. Software

BrainStem Reference Manual, Release 2.11.1

USB Tree

USB Tree

Controllers Tier 2 Tier 3 Tier 4 Tier 5 Tier 6 Tier 7

IS0 1 =]
N\ USB2.0 Hub ... L=l
| (0]
/ iPhone =) AX88179A
KIX 0 USB3.0 Hub ...
=YV &
Controller 2 USBHub3c \ USB3.1 Hub ... @2 NS1081

2
3B Optical Mou:
-
===

JSBHub3c Sten|

- Compare USB Tree
-

The USB Tree is a great way to visualize the USB device tree for the host processor. USB has the concept of
tiers: the host and root hub are on the first tier. A device connected to the root hub is on the second tier. If a
hub is added in between the device and the root hub, the device moves down to the third tier. Up to 5 non-root
hubs can be added in series for a maximum of 7 USB tiers (5 Hubs + root hub + device).

The USB Tree provides a simple visualization of the 7 hub tiers along with each device and how it is connected
back to the host controller.

Tier Controllers Tier 2 Tier 3 Tier 4 Tier 5 Tier 6 Tier 7
N

Device feature

f

Port Number
|
Connection speed

I =l AX88179A

Host L : |B |] /
Controlle|r Convoer 2 st:nug\

Acroname device

Stacked USB 2/3 hub _—

=Acroname device controller’

2.3. ControlRoom 301

BrainStem Reference Manual, Release 2.11.1

Label Description

Tier Depth of USB tree, up to 7

Port number Physical port of the Acroname product the USB device is connected to (Only avail-
able when connected to Acroname products)

Connection speed 3 = USB 3 (blue = 10 Gb/s, green = 5 Gb/s)
2 =USB 2480 Mb/s

1=USB 1
Host controller Host controller node, tier 1
Acroname device Acroname devices are outlined in blue to for easy indentification

Stacked USB 2/3 hub Hubs with both USB 2 and USB 3 connections are shown as stacks

Acroname device Responsible for controlling the hub and communicating with ControlRoom

controller (stem)

Device feature USB device feature. ISO indicates that the device is capable of isochronous trans-
fers such as streaming video and audio

USB Tree Comparisons

The USB Tree can be saved as a PDF with embedded data. The current tree can then be compared with a
saved tree to easily identify changes.

USB Tree

Controllers Tier 2 Tier 3 Tier 4 Tier 5 Tier 6 Tier 7

D
/
‘ : 5B Optical Mou

. J - / . J

- Compare USB Tree ‘ Cancel Compare ‘ X USB Tree does not match; 1 devices missing and 1 new devices found!
S— A)

Save USB Tree - saves to a PDF file. Saved USB Tree PDF files can be used as recipes for room designs

Compare the USB Tree - uploads a saved USB Tree PDF file for dynamic comparison with the current tree.
USB devices that match the loaded USB Tree recipe will show a gray background. Missing devices will be
shown in red and new devices in green. If a device has been moved to a different port, it will appear twice,
once in green as new, and once in red as missing

Cancel Compare - cancels the USB Tree comparison

Summary - if the current tree does not match, a summary will be displayed indicating how many devices are
new, and how many devices are missing

302 Chapter 2. Software

BrainStem Reference Manual, Release 2.11.1

Port Control

USBHub3c/

Serial Number:

Upstream Port Selection

.
» Mode: Manual

Port 2

Port O Port 1

Port 3

Port 4

Port 5

:@ o@.

5 Gbps @

5

B

oomm
Ch

480 Mbps() 10 Gbps @

Upstream
Host Device

Apple Inc.
iPhone

The Port control panels represent each connected Acroname device, providing detailed control and information
per port.

Editable .
pcroname —USBHuUb3c/

device name Serial Number:

VIA Labs, Inc.
USB3.1 Hub

Upstream j Upstream Port Selection port 0 Neort 1 N eort 2 B eort 3 D eort 4 Nport
port selection = Mode: Manual or = o or o o
Port name =———Port0 Port 1 Port 2 Port 3 Port 4 Port 5

Host icon —— ° ©) g U Device class icon Port
a toggle
5 Gbps @ 480 Mbps() 10 Gbps @ USB device speed
I
Upstream Apple Inc. VIA Labs, Inc. USB MFG /deVice name

Host Device

iPhone

USB3.1 Hub

) N

Editable Acroname device name - click the pencil icon to change the friendly name, click device save to
store the change to the device internal memory. Default - product family name

N

Serial number - unique to the Acroname device

Upstream port selection - toggle to enable manual or auto (lowest port number priority) host port selection.
In manual mode, the upstream port can be selected directly by clicking the dark blue port name buttons

2.3. ControlRoom 303

BrainStem Reference Manual, Release 2.11.1

Port name - name of Acroname device port. Default - numerical value of port

Device class icon - unique for each device class

Port toggle - independently enables and disables each port. Up = on

USB device speed - nominal device connection speed

USB MFG / device nhame - manufacturer and device name descriptors

Device save - stores changes to the hub friendly name and port enabled / disabled toggles. Saved changes
will persist through power cycles

Device reset - reboots the Acroname device, temporarily disconnecting and reconnecting all connected USB
devices

Port Details Expanded

e
Port 2 Details
. Voltage:
5.1 volts
Power:
2.5 watts
Serial:
= - 000000001
E J vID:
= 0x2109
PID:
10 Gbps . 0x0822
USB Speed -
VIA Labs, Inc. Actual:
USB3.1 Hub 10 Gbps
\ e =

Expanded port view with details

Click the USB device icon to expand each port view for realtime details:

Current

Voltage

Power

Serial number

Vendor and Product ID

Actual and maximum USB speeds
Device manufacturer and device name
Cable information (if advertised):

— Cable current max

304

Chapter 2. Software

BrainStem Reference Manual, Release 2.11.1

— Cable voltage max
— Cable speed max
— Cable orientation

— Cable type

2.3.3 Advanced

For more advanced ControlRoom options, see configuration, logging, and security.

Configuration

Preferences

To change the default settings of ControlRoom, the desktop application provides a simple dialog window that
enables users to change the HTTP server settings and specify SSL/TLS Certificates. To open the dialog, click
on the taskbar menu and select “Preferences”.

Basic settings

Basic ControlRoom settings

Config File(s) - optional path to load JSON configuration files

Start BrainD at login - toggles BrainD service to start automatically

Allow remote access - lets other computers view the local USB tree information over a network connection
Use HTTP Secure - Enables SSL/TLS on client connections.

Restore Defaults - sets configuration to factory defaults

Cancel - closes the preferences window without saving

Save - saves application settings, restart ControlRoom to apply

Advanced settings

Advanced ControlRoom settings

Server Address - IP address to allow remote browsers to connect and view the local ControlRoom instance.
Default is 127.0.0.1

Server Port - server port for remote connections. Default is 9005

Enable SSL - enables SSL/TLS on client connections.

SSL Certificate - SSL/TLS Certificate (.crt) file. If not specified, a self-signed cert will be generated.
SSL Key - SSL/TLS Key (.key) file. If not specified, a self-signed cert will be generated.

Preferred Network Interface - IP address to allow remote applications to connect over aEther. Default is
127.0.0.1

2.3. ControlRoom 305

BrainStem Reference Manual, Release 2.11.1

@ @ ControlRoom Settings

Config File(s): | Select

Advanced

Start BrainD at login
Allow remote access
Use HTTP Secure

Restore Defaults Cancel

306 Chapter 2. Software

BrainStem Reference Manual, Release 2.11.1

[] @ ControlRoom Settings

Config File(s): Select

Web Server

Server Address: 127.0.0.1

Server Port: 9005
Enable SSL:

SSL Certificate: Select

SSL Key: Select

aEther

Preferred Network Interface: 127.0.0.1

Restore Defaults Cancel

2.3. ControlRoom 307

BrainStem Reference Manual, Release 2.11.1

Configuration Files

ControlRoom allows for more fine-grained control of the backend service through the use of JSON configuration
files. This configuration includes settings for logging, polling rates, and web server configuration.

The BrainD service will read the following configuration file for the current operating system:
1. Windows: $AppData%\Acroname\BrainD\config\config. json
2. Mac: ~/Library/Application Support/Acroname/BrainD/config/config.json
3. Linux: ~/.acroname/BrainD/config/config. json

Each entry in the config. json file will be merged into the default configuration object, overriding each field
thatis listed. In addition, if any configuration files are specified in the “Config File(s)” entry of the Settings menu,
these files will be read and merged as well. The default configuration object is defined as the following:

{
"logging": {
"loggers": {

"default": "debug"
}I
"sinks": {
"consoleSinks": [

{

"enable": true,

"level": "debug",
"enableColors": true,
"colorPattern": "\uOO1B[Om[\uOO01B[32m3Y-%m—-%d %H:%M:%S.%e\
<u001B[0m] [%$7°%1%S] [\u0O01B[35m%n\u001B[Om:\u001B[33m%#\u001B[Om] %v",
"noColorPattern": "[%Y-%m—-%d %$H:%$M:%S] [%1] [%n:%#] Sv"
I3
]I
"fileSinks": [
{
"enable": true,
"level": "info",
"pattern": "[$Y-%m—-%d $H:%M:%S] [%1] [%n:%#] Sv",
"path": {
"win": "$AppData%\\Acroname\\BrainD\\log",
"mac": "~/Library/Logs/Acroname/BrainD",
"1in": "~/.acroname/BrainD/log"
}I
"baseFileName": "braind.log",
"maxFiles": 5,

"maxFileSize": 5242880

}I
"flushInterval”™: 3000

}I

"httpServer": {
"enable": false,
"address": "0.0.0.0",
"port": 9005,
"threadCount": 1

}I

"httpsServer": {
"enable": true,

(continues on next page)

308 Chapter 2. Software

BrainStem Reference Manual, Release 2.11.1

(continued from previous page)

"address": "0.0.0.0",
"port": 9006,
"threadCount": 1,
"sslCert": "",
"sslKey": ""

}I

"pollingRates": {
"acronameDevicesState": 300,
"devices": 300,
"brainstem": 1000

Note: The config['httpServer'] and config['httpsServer'] configuration objects will have no
effect if the ControlRoom desktop application is used. The value in the Settings dialog takes priority.

Examples

Add an additional log file output:

{
"logging": {
"sinks": {
"fileSinks": [
{
"enable": true,
"level": "info",
"pattern": "[$Y-%m—-%d $H:%M:%S] [%1] [%n:%#] Sv",
"path": {
"win": "C:\\Users\\username\\Desktop",
"mac": "~/Desktop",
"1in": "~/Desktop"
}I
"baseFileName": "custom-log-file.log"
3
1
}
}
}

Increase the log flush rate from 3000ms to 500ms, and reduce the USB tree polling rate from 300ms to 1000ms:

{
"logging": {
"flushInterval": 3000
by
"pollingRates": {
"devices": 1000
}
}

2.3. ControlRoom 309

BrainStem Reference Manual, Release 2.11.1

Logging
ControlRoom generates runtime logging to aid in debugging and understanding for many events. These log
files are stored by default in the following path for each operating system:

1. Windows: $AppData%\Acroname\BrainD\log

2. Mac: ~/Library/Logs/Acroname/BrainD

3. Linux: ~/.acroname/BrainD/log

By default, these log files will rotate when they reach 5MB in size, up to a maximum of five log files. After this
point, old log files will be removed to make room for new ones.

For information on how to adjust the logging parameters or specify new log files, see Configuration.

Security

SSL Certificates

SSL (Secure Sockets Layer) is a fundamental technology for securing web applications by encrypting data,
ensuring data integrity, authenticating servers, and enhancing user trust.

SSL layers encrypt the data transmitted between a user’s web browser and server. This encryption ensures
that the data remains unreadable and secure even if intercepted by malicious actors. SSL includes mecha-
nisms to ensure data integrity during transmission using cryptographic hash functions to detect unauthorized
modifications or tampering. In the event of altered data during transit, the recipient can see and reject the
modified data.

ControlRoom allows loading a user’s SSL certificate through the seitings and configuration dialog. Many exter-
nal service providers can provide an SSL certificate; one may already have an SSL certificate for ControlRoom
installations.

Use of a self-signed certificate may cause a warning to appear when accessing the ControlRoom webpage or
BrainD REST endpoints. This is caused by the browser failing to authenticate the received certificate against
a trusted certificate authority.

& This Connection Is Not Private

This website may be impersonating “127.0.0.1" to steal your personal or financial information.
You should go back to the previous page.

Go Back

Safari warns you when a website has a certificate that is not valid. This may happen if the
website is misconfigured or an attacker has compromised your connection.

To learn more, you can view the certificate. If you understand the risks involved, you can visit
this website.

OpenSSL is an option that one can use to create a self-signed SSL certificate. The following command may
be used to generate a self-signed certificate:

310 Chapter 2. Software

BrainStem Reference Manual, Release 2.11.1

Bash

[openssl req —new -x509 -days 365 -nodes -keyout example.key -out example.crt]

By default, ControlRoom will serve an insecure web page over HTTP, without any certificates or encryption.
If insecure communications over HTTP are not desirable, the seftings and configuration dialog can be used
to enable HTTPS/SSL communication. If a certificate is not specified, then ControlRoom will automatically
generate a self-signed certificate.

Certificates are stored in the following directory:
1. Windows: $AppData%\Acroname\BrainD\config
2. Mac: ~/Library/Application\ Support/Acroname/BrainD/config

3. Linux: ~/.acroname/BrainD/config

Platform Specific Considerations

Configure MacOS to Advertise Its Hosthame

Name resolution is a process where a readable name, e.g. E1izaPC, can be resolved into a numerical IP
address, e.g. 192.168.41.75. Name resolution eases server connections, by allowing usage of URLs like
https://ElizaPC instead of a hard-to-remember, and fragile, https://192.168.41.75.

MacQOS, in default configuration, doesn’t provide resolution for the host’'s own name.
Here’s how to fix that.

1. Get to System Preferences via the Apple Menu in the top left of the screen.

Top Left of the Screen

0 @ Finder File Edit View Go Window F

About This Mac

System Preferences... 1 update 9
App Store...
Recent Items >

Force Quit Finder

Sleep
Restart...
Shut Down...

Lock Screen
Log Out

2. Go to the “Sharing” Panel

2.3. ControlRoom 311

BrainStem Reference Manual, Release 2.11.1

3. Enable File Sharing by checking this box. Other devices on the network can now resolve this machine’s
name. Note: File sharing does not have to remain enabled but must be enabled at least once for name

resolution.

r R
®@o® o < > i Sharing Q search
Computer Name: ElizaPC
Computers on your local network can access your computer at: . Edit |

ElizaPC.local

On Service

| Screen Sharing
ile Sharing

" Media Sharing

Printer Sharing
Remote Login
Remote Management
Remote Apple Events

BASIN) < 1N

Bluetooth Sharing
Internet Sharing
Content Caching

<J<J

AirPlay Receiver

* File Sharing: Off

File Sharing allows other users to access shared folders on this computer and

allows administrators to access all volumes.

Shared Folders: Users:
5 Downloads 2
+2: Everyone
[]
+ - +

~ Options...

Read...Write
Read Only

<> <

4. Configure these settings to your application’s needs. This configuration is just for pictorial example. Other
devices on the network can still resolve this machine’s name, if File Sharing was ever enabled.

312

Chapter 2. Software

BrainStem Reference Manual, Release 2.11.1

2.3.4 Features and Functions

* Visualize the USB tree in a browser in real-time
+ Create device layout recipes via snapshots
» Compare the current device layout to a loaded snapshot
* View device status including:
— Device connection speed
— Custom devices names
— Troubleshooting information
« Control Acroname device functions including:
— Downstream port toggle, simulating a device unplug / plug cycle
— Upstream port swap
— Upstream port selection mode
— Save settings to non-volatile storage

— Remote Acroname device reset

2.4 Q-Sys

TECHNOLOGY
PARTNER

2.4. Q-Sys 313

BrainStem Reference Manual, Release 2.11.1

The Q-Sys OS and Designer Software serves as the software-based singular foundation that drives and man-
ages a multitude of Q-Sys Products within the platform, including native software, services and hardware.
Acroname’s products bring unique control and telemetry of USB devices and peripherials.

The Q-Sys Designer Software’s modern IT architecture and a set of development tools (called “Q-Sys Open”)
enable an entire Ecosystem of third-party integrations developed by approved/endorsed Q-Sys Partners as
well as a worldwide community of Q-Sys programmers and developers. Acroname is part of the approved
Partners.

2.4.1 Installation

Download the appropriate Q-Sys Design Software’® for your operating system. See Q-Sys support documen-
tation for installation instructions.

Requirements

» Q-Sys Designer Software Version 9.9 and higher is recommended when using a virtual core instances.
Q-Sys requires a supported Acroname USBHub3c with the Serial Control add-on software feature’*:
« USBHub3c”® - USB-C Hub with Power Delivery Analyzer + Tester

Install Plugin

The Q-Sys Asset Manger is the recommended method for managing plugins. To install an Acroname plugin:
1. Click the plugin icon to open the Asset Manager
In the Browse tab, search for Acroname and select the plugin that correlating the Acroname hardware.

Review the Description information for any additional notes or requirements.

L

Click Install. When the installation is complete, the Acroname product plugin will appear in the Plugins
categoray within the Schematic Elements section of Q-Sys Designer.

2.4.2 Quick Start Guide

To get started with Q-Sys, follow these steps from the Q-Sys Designer Software:
1. Install Q-Sys Plugin following the Installation Guide.

2. Connect an Acroname product with a valid Acroname USBHub3c with the Serial Control add-on software
feature <https://acroname.com/store/t99-serial> installed. For this guide, a USBHub3c.

3. Add an Acroname USBHub3c plugin to the design canvas to create rich USB based applications.

73 https://www.gsys.com/resources/software-and-firmware/q-sys-designer-software/
74 https://acroname.com/store/t99-serial
75 https://acroname.com/store/programmable-industrial-power-delivery-hub-s99-usbhub-3c-pro

314 Chapter 2. Software

https://www.qsys.com/resources/software-and-firmware/q-sys-designer-software/
https://acroname.com/store/t99-serial
https://acroname.com/store/programmable-industrial-power-delivery-hub-s99-usbhub-3c-pro

BrainStem Reference Manual, Release 2.11.1

Connecting through Serial Port

The following example shows highlights that a serial port on the Core can be connected to a USBHub3c serial
port.

Serial Port A B
Core-1

P Acroname
USBHub3c

Interface

1.0
Select Upstream... O
TS, Interface Select @—P—J” Bl

Oselector1 (5
OSelector2 &

Change Upstream Port

The following example shows how an output selector through the Q-Sys user interface can change the upstream

port on the USBHub3c. Switching the upstream port allows USB devices to communicate with two different
host machines, which is often found in BYOD applications and environments.

Serial Port A ¥ Acroname Selection Label Qutput Sel Selection Qutput
C‘"ef'l USB{'gb?’C] \ MTR |[MTR Interface | @ [BvOoD | [BYOD Interface|
Interface :

Select Upstream... O Z ‘ BYOD ||BVOD Imerface| |
Upstream... O

QOutput (@) Interface Select A ’E]r
Ofselector1 (SGr————"
OSelector2 3

Status/Control
TscG310-1
TSC-101-G3

O ucl Current UCI_ O

Interface Select
USB EC Speakerphone 1 In

Core-1
Flex Out

© USB EC Speakerphone 1 Out MTR Status/
Core-1 Control

NC-110 USB Video Bridge
NC-110-1 Core-1

2.4.3 Features and Functions

+ Control Acroname device functions including:

Downstream port toggle, simulating a device unplug / plug cycle
Downstream port connection status

Upstream port selection

Upstream port connection status

Firmware and model information

2.4. Q-Sys 315

BrainStem Reference Manual, Release 2.11.1

2.5 DFU Automator

[NON] g Erase+Restore MacBook on USBHub3c Port #1 ﬁ | 2 ®
Q
a:
= All Actions & Scripting
a & Controls &3 Device
& Send a Set DFU Mode message to attached MacBook on Hub Show More 4 ;
Location Media
Hub Serial Number on ports [€3 Number]
™ Sharing [Documents
® Web
Wait 5 seconds
‘“‘ Grab the Exclusive Chip Identification of an Apple device on Hub Show More \J Send Message
Hub Serial Number on port # €3 Number Open App
Play Music
Q Find connected devices from & Get ECID of Apple Device
Comment
Q Erase and restore the latest release of System to Show Less
Show Result
@ Find Connected Devices from Input
Show Alert
IPSWs to install: IPSWs to install Ask for Input
3 count

Apple Devices can be putinto Device Firmware Update (DFU) mode to allow for firmware updating and restora-
tion, as well as the deployment of custom OS images. This is achieved by sending Vendor-Specific Messages
(VDMs) to a DFU-capable port on the target device. VDMs are point-to-point and are not passed on by a USB
Hub; however, USBHub3c can generate and send arbitrary VDMs directly to connected devices. This lets Mac
Sysadmins re-image multiple Macs at once, greatly speeding up deployment.

DFU Automator is a small application that enables Apple Shortcuts to control USBHub3c’s DFU functions.
DFU Automator operates as a background tool, responding to commands issued by Apple Shortcuts. When
combined with Apple Configurator actions, shortcuts can fully automate Mac deployment and provisioning.

Included with DFU Automator is an example shortcut showing how to DFU restore a Macbook on port 1 of
USBHub3c.

2.5.1 DFU Automator Features

» Send DFU Mode or Reboot VDMs to a MacBook
» Send arbitrary VDMs (Hexstring input)
» Enable or disable hub ports

* Retrieve the ECID of an attached Apple device

316 Chapter 2. Software

BrainStem Reference Manual, Release 2.11.1

Installation and Setup

Install Apple Configurator

» Open the App Store on your Mac
» Search for Apple Configurator
* Click Install

Install DFU Automator

1. Download DFU Automator from the official source

2. Open the downloaded .dmg file

[XX) [} DFU Automator
[. ‘ [.
= © 9 —
” J L J
Applications DFU Automator Examples

3. Drag DFU Automator into the Applications folder

4. Open DFU Automator from the Applications folder once to allow Shortcuts to recognize it

Adding the Example Shortcut

1. In the Examples Folder, open the shortcut titled Erase+Restore MacBook on USBHub3c Port #1

o0 Report

8 Erase+Restore MacBook
on USBHub3c Port #1

Erase+Restore

MacBook on
USBHub3c Port #1 e

2.5. DFU Automator 317

BrainStem Reference Manual, Release 2.11.1

2. Click Add Shortcut

3. The shortcut will now appear in the Shortcuts app under All Shortcuts

eoe () All Shortcuts

Gallery

Shortcuts 8

= Erase+Restore

O All Shortcuts 9 MacBook on
SBHub3c Port...

(" Share Sheet 1 o ek

£} Quick Actions
£ Menu Bar 5 starter Shortcuts

4. Click the shortcut’s icon (not the play button that appears on hover) to view the workflow:

[NON) @ Erase+Restore MacBook on USBHub3c Port #1 [‘I] | 2 ®
Q
1
I = All Actions 6 Scripting
a & Controls 2 Device
F ¥y Send a Set DFU Mode message to attached MacBook on Hub Show More
. </ Location I Media
Hub Serial Number on ports [£ Number]
™ Sharing [Documents
® Web
Wait 5 seconds
A Grab the Exclusive Chip Identification of an Apple device on Hub Show More \J Send Message
Hub Serial Number on port # € Number Open App
1 Play Music
g Find connected devices from & Get ECID of Apple Device
1
Comment
g Erase and restore the latest release of System to Show Less
. Show Result
@ Find Connected Devices from Input
Show Alert
IPSWs to install: IPSWs to install Ask for Input
a Count

318 Chapter 2. Software

BrainStem Reference Manual, Release 2.11.1

Shortcut Example

[NON] @ Erase+Restore MacBook on USBHub3c Port #1 M [2 ®
Q
8 -
[= All Actions Q Scripting
a & Controls 2 Device
& Send a Set DFU Mode message to attached MacBook on Hub Show More
) </ Location J Media
Hub Serial Number on ports [&3 Number]
M Sharing [Documents
® Web
Wait 5 seconds
“‘ Grab the Exclusive Chip Identification of an Apple device on Hub Show More \J Send Message
Hub Serial Number on port # € Number Open App
1 Play Music
g Find connected devices from & Get ECID of Apple Device
|
Comment
Q Erase and restore the latest release of System to Show Less
Show Result
Find Connected Devices from Input
Show Alert

IPSWs to install: IPSWs to install Ask for Input

A count

Shortcut Workflow Step-by-Step
To understand each step of the shortcut, Control-click an action and select Show Info.

Key Actions

#
+ Sets the USBHub3c port number for the MacBook to be updated (set to 1 by default)

“"‘ Send a Set DFU Mode message to attached MacBook on Hub Show More
Hub Serial Number on ports [E3 Number]

» Sends a Set DFU Mode message on hub # Hub Serial Number on ports [# Number]

— Tells DFU Automator to have USBHub3c send a Vendor-Defined-Message to put a Mac-
Book on port [# Number] into DFU mode

— If only one hub connected, Hub Serial Number can be blank

» Waits 5 seconds to give the MacBook time to enter DFU Mode

2.5. DFU Automator 319

Bra

inStem Reference Manual, Release 2.11.1

Wait 5 seconds

‘:‘ Grab the Exclusive Chip Identification of an Apple device on Hub Show More
Hub Serial Number on port # €3 Number

+ Tells DFU Automator to read the ECID of the attached MacBook on the specified port

@ Find connected devices from & Get ECID of Apple Device

+ Tells Apple Configurator to convert the ECID to a Connected Device Entity for use in other
Apple Configurator shortcut actions

» Erases and restores the connected devices

Warning: All data and settings will be removed!

» IPSWs to install: Select additional IPSW files to install on connected devices. Configurator
will choose the correct IPSW for the device being updated

Example Usage

To use the example shortcut to DFU-restore a MacBook:

1

. Locate the DFU-enabled USB-C port on the target Mac:
Apple Silicon MacBooks: Left side, towards the hinge
Intel MacBooks with T2 chip: Left side, away from the hinge
Desktops: Refer to Apple Support’® for more details

2. Connect the host Mac to USBHub3c Port 0
3. Connect the target MacBook’s DFU-enabled port to USBHub3c Port 1

Warning: Target MacBook will be erased!

4. In Shortcuts , click the play button in the upper right of the shortcut icon or the expanded view of the

shortcut

5. Click “Allow” to let the shortcut run actions

+ The target MacBook will chime and boot into DFU mode with a black screen

6. Approve any other privacy popups that appear:

+ Allow configurator to find devices

+ Allow the shortcut share the device ECID with Apple Configurator

76

https://support.apple.com/en-us/108900

320

Chapter 2. Software

https://support.apple.com/en-us/108900

BrainStem Reference Manual, Release 2.11.1

Q Erase and restore the latest release of System to Show Less

® Find Connected Devices from Input

IPSWs to install: IPSWs to install

All Shortcuts

S @

Erase+Restore

MacBook on
USBHub3c Port...

8. Apple Configurator will erase and restore the MacBook on port 1

Restoring Multiple Devices Simultaneously

Shortcuts and Configurator actions can be run in parallel, allowing multiple MacBooks to be restored asyn-
chronously. The restore shortcut can be copied and the port number can be set for each port. To use, connect
a MacBook to an available USBHub3c port and manually trigger the corresponding restore shortcut matching
the port number.

More information about using Apple Configurator with Shortcuts can be found here’’.

HubTool

is

a
% util-

ity

that
lets users view detailed information and control settings of Acroname devices.

BrainD
is

a
desk-
top
ser-

Con-
trol-
Room

77 https://support.apple.com/en-au/guide/apple-configurato

2.5. DFU Automator 321

https://support.apple.com/en-au/guide/apple-configurator-mac/acm12a6f7b56/mac
hubtool/index.html
braind/index.html
controlroom/index.html

BrainStem Reference Manual, Release 2.11.1

browser application built on BrainD, designed for audio/video applications and USB device diagnostics.

Sys

@ plu-
gin

‘ ter-

face
for BrainStem Devices to be used in the Q-Sys Designer Software for audio/video applications.

DFU
Au-
toma-

£
(Sv) o

helper application that enables Apple Shortcuts to control USBHub3c’s Device Firmware Update (DFU) mode
operations for Apple devices.

322 Chapter 2. Software

qsys/index.html
DFU-automator/index.html

API Reference

This API reference is organized by programming language. You will find product specific documentation in the
products section.

323

BrainStem Reference Manual, Release 2.11.1

3.1 BrainStem Entities

3.1.1 Analog Entity

API Documentation: [cpp] [python] [.NET] [LabVIEW]

BrainStem modules may have the ability to read an analog voltage (ADC) and convert this into a discrete
digitized value or output a voltage value based on a desired discrete value (DAC). Analog voltage capabilities
will be dictated by the module hardware being used. Module specifics that include the quantity of analog entities
and details for their capacities will be described in that module’s datasheet.

Value (Get/Set)

analog [index] . getValue <= (unsigned short) value
analog [index] . setValue => (unsigned short) value

Getting Values

A BrainStem’s A2D reading will always return a 16 bit value. If the module hardware does not have full 16 bit
wide analog to digital conversion capabilities, the measurement will get propagated up to 16 bits wide.

For example, if a 12-bit A2D engine exists in the target module’s hardware, the reading will get promoted in the
firmware layer by shifting up 4 bits to fill out the 16 bit value (0OXOFFF =: 0XOFFF << 4 = OxFFFO0) in the module’s
firmware. This approach allows more portable API code to be generated independent of the target hardware.

Setting Values

The reading resolution will return a 16 bit value. If the module hardware does not have full 16 bit wide analog
to digital conversion capabilities, the value sent by the API will get propagated up to 16 bits wide.

For example, if a 10-bit DAC engine exists in the target module’s hardware, the reading will get down shifted
5 bits to derive the 10 bit value (0x8000 =: 0x8000 >> 5 = 0x0400) in the module’s firmware. This approach
allows more portable API code to be generated independent of the target hardware.

Configuration (Get/Set)

analog [index] . getConfiguration <= (unsigned char) configuration
analog [index] . setConfiguration => (unsigned char) configuration

Getting Configuration

Some analog entities may be single purpose functionality or can be configured for multiple different behaviors
depending on the hardware. Configuration information includes whether the entities is an input only, output
only, or can be configured as either and input or output.

Setting Configuration

Analog entities that are capable of different operating configurations can be explicitly set to operate in a desired
configuration mode when possible. Defaults for most analog entities are typically as inputs, but will vary by
module hardware.

324 Chapter 3. API Reference

BrainStem Reference Manual, Release 2.11.1

Code Examples

C++

// All commands return aErr values when errors are encountered and aErrNone on
// success.

stem.analog[0] .getValue (value); // gets the value of A2D channel 0 into variable value
stem.analog[3] .setValue (1234); // sets the DAC on channel 3 to a value of 1234
stem.analog[0] .setConfiguration (analogConfigurationInput) ;

Reflex

stem.analog[0] .getValue (value); // gets the value of A2D channel 0 into variable value
stem.analog[3] .setValue(1234); // sets the DAC on channel 3 to a value of 1234

Python

result = stem.analog[2].getValue() # gets the value of A2D channel 2 into variable.
sresult.

print result.value

err = stem.analog([3].setValue (1234) # sets the DAC on channel 3 to a value of 1234

print err

3.1.2 App Entity

API Documentation: [cpp] [python] [.NET] [LabVIEW]

BrainStem modules have a unique mechanism and communication method to send host-to-stem or stem-to-
stem messages that can initiate a Reflex origin to trigger if one is defined on the target module. BrainStem
modules may have up to 4 different (0-3) entity app instances.

Fmmmmmmm e
BrainStem Module (Address 6) i BrainStem Module i
prTTTTTTTIIIS : ! (Address 8) |
t (unsigned ! cmdAPP : |

Host —Link—r— it | Reflex | |€—I2C —>i ! _anE_AEE’_E i

i : appParam) Orilgin ! i Reflex 1|
R | | L_Origin__|
: ! - !
i |
b oo - (unsigned int returnval) - -------- '

Please be aware that a Reflex file must be enabled on the target module for a call to an App entity to be
successful.

3.1. BrainStem Entities 325

BrainStem Reference Manual, Release 2.11.1

Execute (non-blocking)

[app[O] . execute => (unsigned int) appParam

This entities will pass the data specified in appParam to be passed into the Reflex handle. The 4 bytes are up
to the implementor to mean what ever one wants them to be.

Code Examples

C++

// All commands return akErr values when errors are encountered and aErrNone on
// success.

stem.app[0] .execute (3131948783); // triggers the App reflex handle and passes 4 bytes.
sto it

Reflex

// Somewhere in a Reflex file
reflex app[0] (int appParam) {
// do interesting things

}

stem.app[0] .execute (3131948783); // triggers the App reflex handle and passes 4 bytes.
oto it

Python

[Implementation comming in future release.]

3.1.3 Clock Entity

API Documentation: [cpp] [python] [.NET] [LabVIEW]

BrainStem modules may have a real time clock. This capability will be listed in the product datasheet. The
clock entity allows the user to set and read the real time clock.

326 Chapter 3. API Reference

BrainStem Reference Manual, Release 2.11.1

Year (Get/Set)

clock . getYear <= (unsigned short) year
clock . setyear => (unsigned short) year

Gets or sets the year value of the real time clock.

Month (Get/Set)

clock . getMonth <= (unsigned char) month
clock . setMonth => (unsigned char) month

Gets or sets the month value of the real time clock. Valid values are 1-12.

Day (Get/Set)

clock . getDay <= (unsigned char) day
clock . setDay => (unsigned char) day

Gets or sets the day value of the real time clock. Valid values are 1-31 depending on the month setting.

Hour (Get/Set)

clock . getHour <= (unsigned char) hour
clock . setHour => (unsigned char) hour

Gets or sets the hour value of the real time clock. Valid values are 0-23.

Minute (Get/Set)

clock . getMinute <= (unsigned char) minute
clock . setMinute => (unsigned char) minute

Gets or sets the minute value of the real time clock. Valid values are 0-59.

Second (Get/Set)

clock . getSecond <= (unsigned char) second
clock . setSecond => (unsigned char) second

Gets or sets the second value of the real time clock. Valid values are 0-59.

3.1. BrainStem Entities

327

BrainStem Reference Manual, Release 2.11.1

Code Examples

C++

// All commands return aErr values when errors are encountered and aErrNone on
// success. Get requests fill the variable with the current clock value.

stem.clock.getYear (year) ;
stem.clock.setyear (year) ;
stem.clock.getMonth (month) ;
stem.clock.setMonth (month) ;
stem.clock.getDay (day) ;
stem.clock.setDay (day) ;
stem.clock.getHour (hour) ;
stem.clock.setHour (hour) ;
stem.clock.getMinute (minute
stem.clock.setMinute (minute
stem.clock.getSecond (second
(

’

’

4

’

stem.clock.setSecond (second

Reflex

// Get requests fill the variable with the value.

stem.clock.getYear (year) ;
stem.clock.setyear (year) ;
stem.clock.getMonth (month) ;
stem.clock.setMonth (month) ;
stem.clock.getDay (day) ;
stem.clock.setDay (day) ;
stem.clock.getHour (hour) ;
stem.clock.setHour (hour) ;
stem.clock.getMinute (minute
stem.clock.setMinute (minute
stem.clock.getSecond (second
(

’

’

4

stem.clock.setSecond (second) ;
Python
year = stem.clock.getYear();

stem.clock.setyear (year) ;

month = stem.clock.getMonth () ;
stem.clock.setMonth (month) ;

day = stem.clock.getDay () ;
stem.clock.setDay (day) ;

hour = stem.clock.getHour () ;
stem.clock.setHour (hour) ;

minute = stem.clock.getMinute () ;
stem.clock.setMinute (minute) ;
second = stem.clock.getSecond() ;
stem.clock.setSecond (second) ;

328 Chapter 3. API Reference

BrainStem Reference Manual, Release 2.11.1

3.1.4 Digital Entity

API Documentation: [cpp] [python] [[NET] [LabVIEW]

BrainStem modules may have the ability to read, write or manipulate a digital pin. Digital 1/0O capabilities will
be dictated by the module hardware being used. Module specifics that include the quantity of digital entities
and details for their capacities will be described in that module’s datasheet.

State (Get/Set)
digital [index] . getState <= (unsigned char) state
digital [index] . setState => (unsigned char) state

Gets or Sets the digital /0 Value.

For gets the digital input state will be reported in a boolean fashion. Voltage threshold tolerance details for the
target module will be described in the datasheet.

For sets the digital output state will be asserted logic high or logic low. Voltage threshold details for the target
module will be described in the datasheet.

Configuration (Get/Set)

digital [index] . getConfiguration <= (unsigned char) configuration
digital [index] . setConfiguration => (unsigned char) configuration

Gets or Sets the digital pin configuration.

Some digital entities may be single purpose functionality or can be configured for multiple behaviors depending
on the hardware.

Digital entities that are capable of different operating configurations can be explicitly set to operate in a desired
configuration mode when possible. Defaults for most digital entities are typically as inputs, but will vary by
module hardware.

Available configurations for the digital entities:

Function Typedef Constant (C++) Typedef Constant (Python) Val
Digital Input digitalConfigurationinput CONFIGURATION_INPUT 0
Digital Output digitalConfigurationOutput CONFIGURATION_OUTPUT 1
RCServo Input digitalConfigurationRCServolnput CONFIGURATION_RCSERVO_INPUT 2
RCServo Out- digitalConfigurationRCServoOut- CONFIGURA- 3
put put TION_RCSERVO_OUTPUT
High Z State digitalConfigurationHiZ CONFIGURATION_HIGHZ 4
Input Pull Up digitalConfigurationinputPullUp CONFIGURATION_INPUT_PULL_UP 0
Input No Pull digitalConfigurationinputNoPull CONFIGURATION_INPUT_NO_PULL 4
Input Pull Down digitalConfigurationinputPullDown CONFIGURA- 5
TION_INPUT_PULL_DOWN
Signal Output digitalConfigurationSignalOutput CONFIGURATION_SIGNAL_OUTPUT 6
Signal Input digitalConfigurationSignallnput CONFIGURATION_SIGNAL_INPUT 7

3.1. BrainStem Entities 329

BrainStem Reference Manual, Release 2.11.1

Note: When using the High Z State configuration the pin and pull-ups are disconnected internally leaving the
external pin floating. A get or set of the state will return in an error.

See the RCServo Entity for more information on its configuration.

Code Examples

C++

// All commands return aErr values when errors are encountered and aErrNone on
// success.

stem.digital[0] .getState (&state); // gets the current digital state for channel 0
stem.digital[3].setState(l); // sets the digital output state to logic high on.
wchannel 3

stem.digital[0] .setConfiguration(digitalConfigurationInput) ;

Reflex

stem.digital[0] .getState (state); // gets the current digital state for channel 0
stem.digital [3] .setState(1l); // sets the digital output state to logic high on.
wchannel 3

Python

state = stem.digital[3].getState() # gets the value of digital channel 3 into.
wvariable state
stem.digital[3].setState(l) # sets the digital on channel 3 to a logic high

3.1.5 Equalizer Entity

API Documentation: [cpp] [python] [[NET] [LabVIEW]

The Equalizer entity provides a concise interface for controlling equalizer and filter settings for receivers (inputs)
and transmitters (outputs). Products supporting Equalizer are capable of applying frequency dependent gain
to their signals. This can allow for compensation for signal loss and degradation due to cable quality, cable
length and the number of connections. It can also act as a filter implemented in hardware or firmware. Products
may implement on or more equalizers; each can be configured using the Equalizer index. Allowed index values
are specified in the product data sheet.

330 Chapter 3. API Reference

BrainStem Reference Manual, Release 2.11.1

Set/Get Transmitter Configuration

equalizer [index] . getTransmitterConfig <= (unsigned char) config
equalizer [index] . setTransmitterConfig => (unsigned char) config

The transmitter is the outgoing portion of the equalizer entity. It is responsible for generating the signal output.
Generally, transmitters may have configurations which apply frequency dependent filters, broadband gain, and
DC-offsets.

Set/Get Receiver Configuration

equalizer [index] . getReceiverConfig (unsigned char) channel <= (unsigned char).
~config

equalizer [index] . setReceiverConfig (unsigned char) channel => (unsigned char)._
—config

The receiver is the incoming portion of the equalizer entity. The receiver equalizer may have configurations
which apply frequency dependent filters or broadband gain. Products with more than one receiver may allow
individual configuration of the receivers via the channel parameter. Allowed channel and config parameter
values are specified in the product data sheet.

Code Examples

C++

//Set Transmitter and Receiver configurations

err = stem.equalizer[0].setTransmitterConfig(transmitterConfigqg);
err = stem.equalizer[l].setTransmitterConfig(transmitterConfigqg);
err = stem.equalizer[0].setReceiverConfig(eqReceiverChannel, receiverConfig);
err = stem.equalizer[l].setReceiverConfig(egqReceiverChannel, receiverConfiqg);

//Get Transmitter and Receiver configurations

err = stem.equalizer[0].getTransmitterConfig(&transmitterConfiqg);
err = stem.equalizer[l].getTransmitterConfig(&transmitterConfiqg);
err = stem.equalizer[0].getReceiverConfig(eqReceiverChannel, &receiverConfig);
err = stem.equalizer([l].getReceiverConfig(eqReceiverChannel, &receiverConfiqg);

Python

#Set Transmitter and Receiver configurations

err = stem.equalizer[0].setTransmitterConfig(transmitterConfigqg);

err = stem.equalizer[l].setTransmitterConfig(transmitterConfigqg);

err = stem.equalizer[0].setReceiverConfig(eqReceiverChannel, receiverConfig);
err = stem.equalizer[l].setReceiverConfig(egqReceiverChannel, receiverConfiqg);

#Get Transmitter and Receiver configurations

result = stem.equalizer[0].getTransmitterConfig();
result = stem.equalizer[l].getTransmitterConfig();
result = stem.equalizer([0].getReceiverConfig(egReceiverChannel);
result = stem.equalizer[l].getReceiverConfig(egqReceiverChannel);

3.1. BrainStem Entities 331

BrainStem Reference Manual, Release 2.11.1

3.1.6 12C Entity

API Documentation: [cpp] [python] [[NET] [LabVIEW]

BrainStem modules may have the ability to read, write data on up to 2 12C bus’s

Read

i2c [index] . read => (unsigned char) address, (unsigned char) length <= (unsigned.
~char*) data

Reads up to 26 bytes from the i2c bus given by the index. The parameters are the 12C address of the device
on the bus, and the number of bytes to read. The result is the data that was read or an error.

Write

i2c [index] . write => (unsigned char) address, (unsigned char) length, (unsigned._
—wchar*) data <= (unsigned char) result

Writes up to 26 bytes to the i2c bus given by the index. The parameters are the I12C address of the device on
the bus, the number of bytes to write, and the data to write. The result is the result error condition or none.

Set Pullup

[iZc [index] . setPullup => (unsigned char) bool }

Sets software controlled pullup state on modules which have software controllable pullups. This setting is
saved when a call to system.save is made so that Pullup settings on bus 0 can persist.

Code Examples

C++

// All commands return aErr values when errors are encountered and aErrNone on

// success.

char buff[2];

stem.i2c[0] .read (0x42, 0x02, buff); // reads two from device with address 0x42.

char wrbuff[] = {0xBE, OxEF};

stem.i2c[0] .write (0x42, 0x02, wrbuff); // writes O0xBEEF to the device with address.
»0x42

stem.i2c[0].setPullup(true) //enables pullup on bus 0

332 Chapter 3. API Reference

BrainStem Reference Manual, Release 2.11.1

Reflex

Currently this entity is not available from within the reflex language.

Python

result = stem.i2c[0].read(0x42, 0x02) # reads two bytes from the i2c bus. The value.
»is given in result.value

print result.value

err = stem.i2c[0] .write (0x42,0x02, b'\xbe\xef') # writes b'\xbe\xef' to the i2c bus.

print err

err = stem.i2c[0].setPullup (True)

print err

3.1.7 Mux Entity

API Documentation: [cpp] [python] [.NET] [LabVIEW]

A MUX is a multiplexer that takes one or more similar inputs (bus, connection, or signal) and allows switching
to one or more outputs. An analogy would be the switchboard of a telephone operator. Calls (inputs) come
in and by re-connecting the input to an output, the operator (multiplexor) can direct that input to on or more
outputs.

One possible output is to not connect the input to anything which essentially disables that input’s connection
to anything. Not every MUX has multiple inputs.

Some mux entities can simply be a single input that can be enabled (connected to a single output) or disabled
(not connected to anything).

Channel (Set/Get)

mux [index] . setChannel => (unsigned char) channel
mux [index] . getChannel <= (unsigned char) channel

Gets/Sets the currently selected channel

Enable/Disable (Set/Get)
mux [index] . setEnable => (unsigned char) enable
mux [index] . getEnable <= (unsigned char) enable

Enables/Disables the mux.

3.1. BrainStem Entities 333

BrainStem Reference Manual, Release 2.11.1

Get Channel Voltage (Get)

mux [index] . getChannelVoltage <= ((unsigned char) channel,

<voltage)

(unsigned char).

Returns the voltage of the supplied channel.

Code Examples

C++

// All commands return aErr values when errors are encountered and aErrNone on
// success. Get calls will fill the variable with the returned value.

err = stem.mux[0] .getChannel (&channel) ;
err = stem.mux[0].setChannel (1) ;

err = stem.mux[0].setEnable (1) ;

err = stem.mux[0].setEnable (0);

err = stem.mux[0].getChannel (1, &voltage);
err = stem.mux[0].setChannel (3);

Reflex

//Get calls will fill the variable with the returned value.
stem.mux .getChannel (&channel) ;
.setChannel (1) ;
.setEnable (1) ;
.setEnable (0);
.getChannel (1, &voltage);
.setChannel (3) ;

stem.mux
stem.mux
stem.mux
stem.mux
stem.mux

Python

result = stem.mux[0].getChannel (&channel) ;
print result.value

err = stem.mux[0].setChannel (1)

err = stem.mux[0].setEnable (1)

err = stem.mux[0].setEnable (0)

voltage = stem.mux[0].getChannel (1)

print voltage.value

err = stem.mux[0].setChannel (3)

334

Chapter 3. API Reference

BrainStem Reference Manual, Release 2.11.1

3.1.8 Pointer Entity

API Documentation: [cpp] [python] [[NET] [LabVIEW]
Access the reflex pad from a host computer.

The Pointers access the pad which is a shared memory area on a BrainStem module. The interface allows
the use of the brainstem scratchpad from the host, and provides a mechanism for allowing the host application
and brainstem relexes to communicate.

The Pointer allows access to the pad in a similar manner as a file pointer accesses the underlying file. The
cursor position can be set via setOffset. A read or write of a character short or int can be made from that cursor
position. In addition the mode of the pointer can be set so that the cursor position automatically increments or
set so that it does not. This allows for multiple reads of the same pad value, or reads of multi-record values,
via an incrementing pointer.

Offset (Get/Set)
pointer [index] . getOffset <= (unsigned char) Offset
pointer [index] . setOffset => (unsigned char) offset

Gets or sets the current cursor position for the pointer.

Mode (Get/Set)
pointer [index] . getMode <= (unsigned char) mode
pointer [index] . setMode => (unsigned char) mode

Get or set the pointer mode, static (0 default) or incrementing (1).

Char (Get/Set)
pointer [index] . getChar <= (unsigned char) value
pointer [index] . setChar => (unsigned char) value

Get or set a character value into the scratchpad at the current pointer offset. This will increment the pointer by
1 byte if the pointer mode is set to increment.

Short (Get/Set)
pointer [index] . getShort <= (unsigned short) value
pointer [index] . setShort => (unsigned short) value

Get or set a short value into the scratchpad at the current pointer offset. This will increment the pointer by 2
bytes if the pointer mode is set to increment.

3.1. BrainStem Entities 335

BrainStem Reference Manual, Release 2.11.1

Int (Get/Set)

pointer
pointer [

[index
index

] . getInt <= value

] . setInt =>

(unsigned int)

(unsigned int) value

Get or set an int value into the scratchpad at the current pointer offset. This will increment the pointer by 4 bytes
if the pointer mode is set to increment.

Code Examples

C++

// All commands
// success. Get

return aErr values when errors are encountered and aErrNone on
calls will fill the variable with the returned value.

stem.pointer[0] .getOffset (&offset);
stem.pointer[0].setOffset (4);
stem.pointer[0] .getMode (&mode) ;
stem.pointer[1].setMode (1) ;
stem.pointer[1].getChar (&value) ;
stem.pointer[1].setChar (6);
stem.pointer[1].getShort (&value);
stem.pointer[1l].setShort (600);
stem.pointer[1].getInt (&value);
stem.pointer[1].setInt (600000) ;
Reflex

//Get calls will fill the variable with the returned value.

stem.pointer[0] .getOffset (offset);
stem.pointer[0] .setOffset (4);
stem.pointer[0] .getMode (mode) ;
stem.pointer[1].setMode (1) ;
stem.pointer[1].getChar (value);
stem.pointer[1].setChar (6);
stem.pointer[1l].getShort (value);
stem.pointer[1].setShort (600);
stem.pointer[1].getInt (value);
stem.pointer[1l].setInt (600000);
Python

result = stem.pointer[0].getOffset ()

print result.value

err = stem.pointer[0].setOffset (4)
result = stem.pointer[0].getMode (mode)
print result.value
err = stem.pointer[1l].setMode (1)
result = stem.pointer[1l].getChar ()
(continues on next page)
336 Chapter 3. API Reference

BrainStem Reference Manual, Release 2.11.1

(continued from previous page)

print result.value

err = stem.pointer[1].setChar (6)

result = stem.pointer[1l].getShort ()
result.value

err = stem.pointer[1].setShort (600)
result = stem.pointer[1l].getInt ()
result.value

result = stem.pointer([1].setInt (600000)

3.1.9 Port Entity

API Documentation: [cpp] [python] [[NET] [LabVIEW]

The Port Entity provides control over the most basic items related to a USB Port. This includes actions ranging
from a complete port enable and disable to the individual interface control. Voltage and current measurements
are also included for devices which support the Port Entity.

Port Enable/Disable (Get/Set)

port [index] . getEnabled <= (unsigned char) enabled
port [index] . setEnabled => (unsigned char) enabled

Provides control (Set) and monitoring (Get) over the an entire port for a provided index (Power, Data, CC and
Vconn). Values either passed in or returned are treated as boolean values.

Power Enable/Disable (Get/Set)

port [index] . getPowerEnabled <= (unsigned char) enabled
port [index] . setPowerEnabled => (unsigned char) enabled

Provides control (Set) and monitoring (Get) over the power for a provided index (Vbus). Values either passed
in or returned are treated as boolean values.

Data Enable/Disable (Get/Set)

port [index] . getDataEnabled <= (unsigned char) enabled
port [index] . setDataEnabled => (unsigned char) enabled

Provides control (Set) and monitoring (Get) over the data lines for a provided index (High Speed (HS) and
Super Speed (SS)). Values either passed in or returned are treated as boolean values.

3.1. BrainStem Entities 337

BrainStem Reference Manual, Release 2.11.1

High Speed (HS) Data Enable/Disable (Get/Set)

port [index] . getDataHSEnabled <= (unsigned char) enabled
port [index] . setDataHSEnabled => (unsigned char) enabled

Provides control (Set) and monitoring (Get) over the High Speed (HS) data lines for a provided index (HS1 and
HS2). Values either passed in or returned are treated as boolean values.

High Speed 1 (HS1) Data Enable/Disable (Get/Set)

port [index] . getDataHS1Enabled <= (unsigned char) enabled
port [index] . setDataHS1Enabled => (unsigned char) enabled

Provides control (Set) and monitoring (Get) over the High Speed 1 (HS1) data lines for a provided index. Values
either passed in or returned are treated as boolean values.

High Speed 2 (HS2) Data Enable/Disable (Get/Set)

port [index] . getDataHS2Enabled <= (unsigned char) enabled
port [index] . setDataHS2Enabled => (unsigned char) enabled

Provides control (Set) and monitoring (Get) over the High Speed 2 (HS2) data lines for a provided index. Values
either passed in or returned are treated as boolean values.

Super Speed (SS) Data Enable/Disable (Get/Set)

port [index] . getDataSSEnabled <= (unsigned char) enabled
port [index] . setDataSSEnabled => (unsigned char) enabled

Provides control (Set) and monitoring (Get) over the Super Speed (SS) data lines for a provided index (SS1
and SS2). Values either passed in or returned are treated as boolean values.

Super Speed 1 (SS1) Data Enable/Disable (Get/Set)

port [index] . getDataSSlEnabled <= (unsigned char) enabled
port [index] . setDataSSlEnabled => (unsigned char) enabled

Provides control (Set) and monitoring (Get) over the Super Speed 1 (SS1) data lines for a provided index.
Values either passed in or returned are treated as boolean values.

338 Chapter 3. API Reference

BrainStem Reference Manual, Release 2.11.1

Super Speed 2 (SS2) Data Enable/Disable (Get/Set)

port [index] . getDataSS2Enabled <= (unsigned char) enabled
port [index] . setDataSS2Enabled => (unsigned char) enabled

Provides control (Set) and monitoring (Get) over the Super Speed 2 (SS2) data lines for a provided index.
Values either passed in or returned are treated as boolean values.

Vconn Enable/Disable (Get/Set)

port [index] . getVconnEnabled <= (unsigned char) enabled
port [index] . setVconnEnabled => (unsigned char) enabled

Provides control (Set) and monitoring (Get) over the Vconn lines for a provided index (Vconn1 and Vconn2
(only one ever exists)). Values either passed in or returned are treated as boolean values.

Vconn 1 Enable/Disable (Get/Set)

port [index] . getVconnlEnabled <= (unsigned char) enabled
port [index] . setVconnlEnabled => (unsigned char) enabled

Provides control (Set) and monitoring (Get) over the Vconn 1 lines for a provided index. Values either passed
in or returned are treated as boolean values.

Vconn 2 Enable/Disable (Get/Set)

port [index] . getVconn2Enabled <= (unsigned char) enabled
port [index] . setVconn2Enabled => (unsigned char) enabled

Provides control (Set) and monitoring (Get) over the Vconn 2 lines for a provided index. Values either passed
in or returned are treated as boolean values.

CC Enable/Disable (Get/Set)

port [index] . getCCEnabled <= (unsigned char) enabled
port [index] . setCCEnabled => (unsigned char) enabled

Provides control (Set) and monitoring (Get) over the CC lines for a provided index (CC1 and CC2). Values
either passed in or returned are treated as boolean values.

3.1. BrainStem Entities 339

BrainStem Reference Manual, Release 2.11.1

CC 1 Enable/Disable (Get/Set)

port [index] . getCClEnabled <= (unsigned char) enabled
port [index] . setCClEnabled => (unsigned char) enabled

Provides control (Set) and monitoring (Get) over the CC 1 lines for a provided index. Values either passed in
or returned are treated as boolean values.

CC 2 Enable/Disable (Get/Set)

port [index] . getCC2Enabled <= (unsigned char) enabled
port [index] . setCC2Enabled => (unsigned char) enabled

Provides control (Set) and monitoring (Get) over the CC 2 lines for a provided index. Values either passed in
or returned are treated as boolean values.

Vbus Voltage/Current (Get)

port [index] . getVbusVoltage <= (unsigned int) microvolts
port [index] . getVbusCurrent <= (unsigned int) microamps

Provides access to the last read values of Voltage (in microvolts) and Current (in microamps) for the Vbus lines.

Vconn Voltage/Current (Get)

port [index] . getVconnVoltage <= (unsigned int) microvolts
port [index] . getVconnCurrent <= (unsigned int) microamps

Provides access to the last read values of Voltage (in microvolts) and Current (in microamps) for the Vconn
lines.

Vbus Accumulated Power (Get/Reset)

port [index] . getVbusAccumulatedPower <= (unsigned int) milliwatthours
port [index] . resetVbusAccumulatedPower => (void)

Returns the accumulated power (energy) sank or sourced by the Vbus line for the given port in units of milliWatt-
hours.

Vconn Accumulated Power (Get/Reset)

port [index] . getVconnAccumulatedPower <= (unsigned int) milliwatthours
port [index] . resetVconnAccumulatedPower => (void)

Returns the accumulated power (energy) sank or sourced by the Vconn line for the given port in units of
milliWatt-hours.

340 Chapter 3. API Reference

BrainStem Reference Manual, Release 2.11.1

Port Name (Get/Set)

port [index] . getName <= (unsigned char([]) name
port [index] . setName => (unsigned char([]) name

Allows for setting a friendly name to the port with a 32 character limit.

Downstream Data Speed (Get)

[port [index] . getDataSpeed <= (unsigned int)

Gets the speed of the enumerated device.

Data Speed Bit Value Define

1.5 Mbit/s 0 0/1 portDataSpeed_Is_1p5M_Bit

12 Mbit/s 1 0/1 portDataSpeed_fs_12M_Bit

480 Mbit/s 2 0/1 portDataSpeed_hs_480M_Bit

5 Gbit/s 3 0/1 portDataSpeed_ss_5G_Bit

10 Gbit/s 4 0/1 portDataSpeed_ss_10G_Bit

USB 2.0 6 0/1 portDataSpeed_Connected 2p0_Bit
USB 3.0 7 0/1 portDataSpeed_Connected_3p0_Bit

3.1.10 Power Delivery Entity

API Documentation: [cpp] [python] [.NET] [LabVIEW]

Power Delivery or PD is a power specification which allows more charging options and device behaviors within
the USB interface. This Entity will allow you to directly access the vast landscape of PD.

When the capabilities of a PD system are fully realized everything in the system is “smart”. That includes the
device, the host and even the cable. All of these elements contain electronics that identify themselves and what
they are capable of doing. Because of this complexity it is important to align on a few terms that will be used
throughout this Entity.

Partner This refers to the side of the PD connection in question. The possible options for this parameter are.

+ Local Indicates the context/perspective of the Acroname device you are communicating with through a
BrainStem connection.

+ Remote The context/perspective of anything other than the Acroname device.

Partner Type Value Define

Local 0 powerdeliveryPartnerLocal
Remote 1 powerdeliveryPartnerRemote

Power Role Indicates the direction of power. This value is typically used in the context of a “Partner”. i.e. The
remote partner is sinking, which would mean the local partner is sourcing. The possible options for this context
are:

« Sink Indicates that the partner is taking power in/from.

3.1. BrainStem Entities 341

BrainStem Reference Manual, Release 2.11.1

» Source Indicates that the partner is providing power out/to.

Power Roles are also used in the context of what a port is capable of doing.
+ Sink Device is capable of consuming power.
» Source Device is capable of producing power.

+ Sink/Source Device is capable of both consuming or producing power. Dual Role Port (DRP)

Power Role Value Define

Disabled 0 powerdeliveryPowerRoleDisabled
Source 1 powerdeliveryPowerRoleSource
Sink 2 powerdeliveryPowerRoleSink
Source/Sink 3 powerdeliveryPowerRoleSourceSink

Power Data Objects (PDO)

» PDO’s define what a device is capable of doing in the world of Power Delivery. PDQO’s are bit packed
integers defined by the PD Specification which vary in meaning based on the type of PDO.

Request Data Objects (RDO)

» RDO’s are the final agreement after successful Power Delivery negotiations. This RDO is always sent by
the sinking device and is the result of the sources advertised PDO’s and the needs/requirements of the
sinking device. Only one RDO exists per valid connection.

Connection State (Get)

[pd[x] . getConnectionState => (unsigned char) state }

Gets the type of connection as defined by the Power Delivery Specification. The most common connections
types are: Not Attached, Sourcing and Sinking.

Power Data Object (Get/Set)

pd[x] . getPowerDataObject => (unsigned int) pdo
pd[x] . setPowerDataObject <= (unsigned int) pdo

Gets and Sets the PDO for a given pd[x] instance, partner and power role.

For any one connection there are 4 locations in which POD’s are exist: Remote Sink, Remote Source, Local
Sink, and Local Source. Within each of PDO locations up to 7 PDO’s can be defined.

Set calls are only allowed on Local Partner assuming the BrainStem device supports this feature.

342 Chapter 3. API Reference

BrainStem Reference Manual, Release 2.11.1

Number of Power Data Objects (Get)

[pd[x] . getNumberOfPowerDataObjects => (unsigned int) pdoCount }

As previously stated 7 PDO’s can be defined per location; however, it is only required that there be 1. This API
allows you the get the number of PDO’s available for a given partner and power role.

Reset Power Data Objects (Set)

[pd[x] . resetPowerDataObjectToDefault => (wvoid)]

Resets the local partner PDO for a given power role and index.

Power Data Object List (Get)

[pd[x] . getPowerDataObjectList => (unsigned int [MAX_PDOS]) list }

Returns a list of all PDO'’s for a given pd[x] instance. This is equivalent to calling getPowerDataObject on all
possiable configurations.

Power Data Objects Enabled (Get/Set)

pd[x] . getPowerDataObjectEnabled => (unsigned char) enable
pd[x] . setPowerDataObjectEnabled <= (unsigned char) enable

Acroname products which support this feature can selectively enable and disable its local PDO’s. In that, if
the local source location has 7 PDQO’s, the user could disable all but the first PDO from being advertised by
disabling them.

Power Data Object Enabled List (Get)

[pd[x] . getPowerDataObjectEnabledList => (unsigned char) enablelist }

Convenience function to getPowerDataObjectEnabled. Returns a bit packed representation of the PDO en-
abled status.

Request Data Object (Get/Set)

pd[x] . getRequestDataObject => (unsigned int) rdo
pd[x] . setRequestDataObject <= (unsigned int) rdo

Gets and Sets the RDO for a given pd[x] instance and partner

Set calls are only possible on a local sinking partner assuming the BrainStem device supports this feature.

3.1. BrainStem Entities 343

BrainStem Reference Manual, Release 2.11.1

Power Role (Get/Set)

pd[x] . getPowerRole => (unsigned char) role
pd[x] . setPowerRole <= (unsigned char) role

The power role defines the type of PD connections the device supports. Devices can be disabled, sinking,
sourcing or dual role ports (capable of sinking or sourcing).

Power Role Preferred (Get/Set)

pd[x] . getPowerRolePreferred => (unsigned char) role
pd[x] . setPowerRolePreferred <= (unsigned char) role

Dual role port typically have a preference of whether they are sinking or sourcing. For instance battery powered
devices typically prefer to sink power since they have a finite amount of battery power; however, many of them
can source power if requested to do so.

Cable Voltage Maximum (Get)

[pd[x] . getCableVoltageMax => (unsigned char) voltage]

Returns the maximum amount of voltage the attached cable is capable of handling. This information is defined
in the emark of the cable and is used during PD negotiations for PDO compatibility.

Cable Current Maximum (Get)

[pd[x] . getCableCurrentMax => (unsigned char) voltage]

Returns the maximum amount of current the attached cable is capable of handling. This information is defined
in the emark of the cable and is used during PD negotiations for PDO compatibility.

Cable Speed Maximum (Get)

[pd[x] . getCableSpeedMax => (unsigned char) speed }

Returns the maximum speed the attached cable is capable of handling. This information is defined in the emark
of the cable.

Cable Type (Get)

[pd[x] . getCableType => (unsigned char) cable :

Returns whether the cable is active or passive and if it is emarked.

344 Chapter 3. API Reference

BrainStem Reference Manual, Release 2.11.1

Cable Orientation (Get)

[pd[X]

. getCableOrientation =>

(unsigned char)

orientation

1

Indicates which side of the connection is being using for PD negotiations. This is based on physical CC strap-

ping within the cable.

Request (Set)

[pd[x] . getCableOrientation <=

(unsigned char)

request

]

Allows access to specific request which are built into the PD specification. It’s important to remember that these
are requests and are not guaranteed to occur. Examples are resets, power, data, vconn role swaps etc.

Table 1: Requests

Request Value Define

Hard Reset 0 pdRequestHardReset

Soft Reset 1 pdRequestSoftReset

Data Reset 2 pdRequestDataReset

Power Role Swap 3 pdRequestPowerRoleSwap

Power Fast Role Swap 4 pdRequestPowerFastRoleSwap

Data Role Swap 5 pdRequestDataRoleSwap

Vconn Swap 6 pdRequestVconnSwap

Sink GoTo Minimum 7 pdRequestSinkGoToMinimum

Remote Source Power Data Objects 8 pdRequestRemoteSourcePowerDataObjects

Remote Sink Power Data Objects 9
Remote Source Extended Capabilities 10
Remote Sink Extended Capabilities 11

Status 12
PPS Status 13
Battery Capabilities 14
Battery Status 15
Manufacturer Info Sop 16
Manufacturer Info Sop’ 17
Manufacturer Info Sop” 18
Discover Identity Sop 19
Discover Identity Sop’ 20
Discover Identity Sop” 21
Revision 22

pdRequestRemoteSinkPowerDataObjects
pdRequestRemoteSourceExtendedCapabilities
pdRequestRemoteSinkExtendedCapabilities
pdRequestStatus

pdRequestPPSStatus
pdRequestBatteryCapabilities
pdRequestBatteryStatus
pdRequestManufacturerinfoSop
pdRequestManufacturerinfoSopp
pdRequestManufacturerinfoSoppp
pdRequestDiscoverldentitySop
pdRequestDiscoverldentitySopp
pdRequestDiscoverldentitySoppp
pdRequestRevision

3.1. BrainStem Entities

345

BrainStem Reference Manual, Release 2.11.1

Request Status (Get)

[pd[x] . requestStatus => (unsigned char) status }

Returns the most recent status for a given pd[x] instance. This is usually paired with the request command
since they are not guaranteed and are asynchronous.

Flag Mode (Get/Set)

pd[x] . getFlagMode => (unsigned char) mode
pd[x] . getFlagMode <= (unsigned char) mode

Allows get and set of a flag configuration for a given USB Power Delivery Flag. The following flags can be
configured to the following different modes:

Table 2: Flags
Flag Value Define
Dual Role Data 1 pdFlagDualRoleData
Dual Role Power 2 pdFlagDualRolePower
Unconstrained Power 3 pdFlagUnconstrainedPower
Suspend Possible 4 pdFlagSuspendPossible
USB Com Possible 5 pdFlaguSBComPossible
Unchunked Message Support 6 pdFlagUnchunkedMessageSupport
Higher Capability 7 pdFlagHigherCapability
Capability Mismatch 8 pdFlagCapabilityMismatch
Giveback Flag 9 pdFlagGivebackFlag
Table 3: Modes
Mode Value Description
Disabled 0 Flag will always report 0
Enabled 1 Flag will always report 1
Auto 2 Flag will show 0 or 1 correctly according to the rest of the hubs state/config

3.1.11 Rail Entity

API Documentation: [cpp] [python] [.NET] [LabVIEW]

The Rail entity provides power control to connected devices on some modules. Check the module datasheet
to determine if the module has this capability.

the Rail entity controls power provided to downstream devices, it has the ability to enable and disable power,
can read voltage on the rail, and provides current consumption information on some modules. There are ad-
ditional capabilities that certain modules provide which enhance basic power delivery through Kelvin sensing,
or by bringing online separate power management functionality.

Certain modules may provide more than one power rail. These are independently controlled and can be ac-
cessed via the entity index.

346 Chapter 3. API Reference

BrainStem Reference Manual, Release 2.11.1

Current (Get)

[rail[index] . getCurrent <= (int) microamps]

Returns the current consumption of the device attached to the rail. This can be a positive or negative value,
and is reported in microamps.

Current Limit (Get/Set)

rail [index] . getCurrentlLimit <= (int) microamps
rail [index] . setCurrentlLimit => (int) microamps

Available on some modules, check your module datasheet. This control gets or sets the maximum current draw
for the given power rail in microamps.

Temperature (Get)

[rail [index] . getTemperature <= (int) microcelsius]

Some modules have a rail temperature measurement. This command gets the current rail temperature in
microcelsius.

Enable (Get/Set)
rail [index] . setEnable => (unsigned char) enable
rail [index] . getEnable <= (unsigned char) enable

Setting Enable

Some rails can be enabled or disabled. The enable value is treated as a boolean 1 will enable the rail and 0
will disable it. Check the module datasheet to determine if this functionality if available for the given rail.

Getting Enable

If a rail can be enabled or disabled, getting the Enable setting will return a 1 if the rail is enabled or 0 otherwise.

Voltage (Get/Set)

rail [index] . setVoltage => (int) microvolts
rail [index] . getVoltage <= (int) microvolts

Some rails are variable voltage rails, and users can set the rails to supply voltage at range of voltage values.
Check the module datasheet for the rail voltage limits, and settings.

Setting Rail Voltage

Setting this value will cause the rail to supply the requested voltage, if it is within the settings defined in the
datasheet.

Getting Rail Voltage

Getting this value will return the current voltage setpoint for the rail in microvolts. If the given rail is fixed, it
returns the fixed voltage setting for the given rail.

3.1. BrainStem Entities 347

BrainStem Reference Manual, Release 2.11.1

Kelvin Sensing (Get/Set)

rail [index] . setKelvinSensingEnable => (unsigned char) enable
rail [index] . getKelvinSensingEnable <= (unsigned char) enable

Some rails have kelvin sensing capabilities. See the module datasheet for more information about using kelvin
sensing in your application.

Setting Kelvin Sensing mode
Setting this value to 1 will enable Kelvin sensing on this rail.
Getting Kelvin Sensing mode

Getting this value will return whether kelvin sensing is enabled on the rail. 1 is enabled 0 is disabled.

Kelvin Sensing State (Get)

[rail [index] . getKelvinSensingState <= (unsigned char) state]

When a rail is capable of Kelvin sensing, under certain error conditions kelvin sensing may be disabled by the
system. This command returns the current kelvin sensing state of the rail, either enabled or disabled.

Operational Mode (Get/Set)

rail [index] . setOperationalMode => (unsigned char) mode
rail [index] . getOperationalMode <= (unsigned char) mode

Certain modules have multiple power regulation stages that can affect the behavior of the supplied rail voltage
and current. This command sets and gets the preferred mode of operation for the given rail. Check the module
datasheet for details on the capabilities and behavior of these operational modes.

Operational State (Get)

[rail [index] . getOperationalState <= (unsigned char) mode }

When a rail is capable of multiple operational modes, getting this value will return the current operational state
of the rail, this can indicate error conditions, or a certain operational mode if the rail is in an automatic behavior.

Code Examples

C++

// All commands return akErr values when errors are encountered and aErrNone on
// success. Get commands fill the variable with the returned value.
stem.rail[0] .getCurrent (microamps) ;
stem.rail[0] .setCurrentLimit (limit) ;
stem.rail[0] .getCurrentLimit (1limit);
stem.rail(
stem.raill

0] .getTemperature (microcelsius);
0] .setEnable(1); //enables rail.

(continues on next page)

348 Chapter 3. API Reference

BrainStem Reference Manual, Release 2.11.1

(continued from previous page)

stem.rail
stem.rail

[0] .getEnable (bEnable) ;
[1] .setVoltage (2000000); // set rail to 2 volts.
stem.rail[1l] .getVoltage (microvolts) ;
stem.rail[0] .setKelvinSensingEnable (1); // enable kelvin sensing.
stem.rail[0] .getKelvinSensingEnable (bEnabled) ;
stem.rail[0] .getKelvinSensingState (bEnabled) ;

[0] .setOperationalMode (auto) ;

[0] .getOperationalMode (mode) ;

[0] .getOperationalState (state);

stem.rail
stem.rail
stem.rail

Refiex

// Get commands fill the variable with the returned value.

stem.rail
stem.rail
stem.rail
stem.rail
stem.rail

[0] .getCurrent (microamps) ;
[0] .setCurrentLimit (1limit) ;
[0] .getCurrentlLimit (limit) ;
[0] .getTemperature (microcelsius);
[0] .setEnable(l); //enables rail.
stem.rail[0] .getEnable (bEnable) ;
stem.rail[1l].setVoltage (2000000); // set rail to 2 volts.
stem.rail[l] .getVoltage (microvolts);
stem.rail[0] .setKelvinSensingEnable (1); // enable kelvin sensing.
[0] .getKelvinSensingEnable (bEnabled) ;
[0] .getKelvinSensingState (bEnabled) ;
[0] .setOperationalMode (auto) ;
[0] .getOperationalMode (mode) ;
[0] .getOperationalState (state);

stem.rail
stem.rail
stem.rail
stem.rail
stem.rail

Python

microamps = stem.rail[0].getCurrent ()
print microamps.value
stem.rail[0] .setCurrentLimit (1imit)

limit = stem.rail[0].getCurrentLimit ()
print limit.value
temperature = stem.rail[0].getTemperature ()

print temperature.value
stem.rail[0] .setEnable (1) //enables rail.
bEnable = stem.rail[0].getEnable ()
print bEnable.value
stem.rail[0] .setVoltage (2000000) // set rail to 2 volts.
microvolts = stem.rail[0].getVoltage (microvolts)
print microvolts.value
stem.rail[0] .setKelvinSensingEnable () // enable kelvin sensing.
bEnabled = stem.rail[0].getKelvinSensingEnable ()
print bEnabled.value
bEnabled = stem.rail[0].getKelvinSensingState ()
print bEnabled.value
stem.rail[0] .setOperationalMode (0, auto);
mode = stem.rail[0].getOperationalMode (0) ;
print mode.value
(continues on next page)

3.1. BrainStem Entities 349

BrainStem Reference Manual, Release 2.11.1

(continued from previous page)

state = stem.rail[0].getOperationalState (0);
print state.value

3.1.12 RCServo Entity

API Documentation: [cpp] [python] [[NET] [LabVIEW]

The RCServo entity provides a pulsed signal based on the RC servo standard. This consist of a period lasting
20ms with a high pulse between 1-2ms. The time high corresponds to a specific position determined by the
servo being used. For example if you are using a 90 degree servo a 1.5ms pulse will correspond to the 45
degrees. 1ms and 2ms pulses will correspond to 0 and 90 degree positions respectively.

The RCServo entity is an overload to the Digital Entity and therefor requires proper configuration of the Digital
entity before the RCServo entity can be enabled.

Note: Not all BrainStem modules will have this capability.

Set/Get Enable

servo [index] . getEnable <= (unsigned char) enable
servo [index] . setEnable => (unsigned char) enable

This functions gets/sets the RCServo function for a given pin (pending, it has been properly configured in the
digital entity). At a firmware level this enables/disables the timers.

Set/Get Position

servo [index] . getPosition <= (unsigned char) position
servo [index] . setPosition => (unsigned char) position

This functions gets/sets the RCServo position. For outputs this will return the currently set position; however,
for inputs it will return the value seen at the pin pending the pulse is valid. If the pulse or period are invalid a
zero will be returned along with the error code aErrRange.

The default range is: 64 (1ms) - 192 (2ms). For example when working with a 90 degree servo setting the
position to 64 will give you 0 degrees and 192 will give you 90 degrees.

Note: getPosition() will return the original setPosition() regardless of the reverse settings.

350 Chapter 3. API Reference

BrainStem Reference Manual, Release 2.11.1

Set/Get Reverse

servo [index] . getReverse <= (unsigned char) reverse
servo [index] . setReverse => (unsigned char) reverse

This functions gets/sets the reverse (invert) option in the RCServo Class.

Given a setPosition of 64 the servo pulse will be 1ms; however, if you reverse it the value will now be treated
as 192.

Aligning the Digital and RCServo Entities

Digital Entity Servo Entity Pin Number Assignment

digital[0] servo[0] Pin 0 RCServo Input
digital[1] servo[1] Pin 1 RCServo Input
digital[2] servo[2] Pin 2 RCServo Input
digital[3] servo[3] Pin 3 RCServo Input
digital[4] servo[4] Pin 4 RCServo Output
digital[5] servo[5] Pin 5 RCServo Output
digital[6] servo[6] Pin 6 RCServo Output
digital[7] servo[7] Pin7 RCServo Output

Code Examples

C++

// All commands return aErr values when errors are encountered and aErrNone on
// success.

//Output

//Set digital pin 8 as an RCServo output.

err = stem.digital[8].setConfiguration(digitalConfigurationRCServoOutput) ;
//Enable the servo channel

err = stem.servo[4].setEnable(l);

//Set servo to middle/neutral position

err = stem.servo[4].setPosition(128);

//Input

//Set digital pin 0 as an RCServo input.

err = stem.digital[0].setConfiguration(digitalConfigurationRCServolInput) ;
//Enable the servo channel

err = stem.servo[0].setEnable(1l);

//Set servo to middle/neutral position

err = stem.servo[4].getPosition (&pPosition);

3.1. BrainStem Entities 351

BrainStem Reference Manual, Release 2.11.1

Python

e 7
All commands return aErr values when errors are encountered and aErrNone on

success.

#Output

#Set digital pin 8 as an RCServo output.

err = stem.digital[8].setConfiguration (CONFIGURATION_RCSERVO_OUTPUT)
#Enable the servo channel

err = stem.servo[4].setEnable (1)

#Set servo to middle/neutral position
err = stem.servo[4].setPosition(128)
#Input

#Set digital pin 0 as an RCServo input.
err = stem.digital[0].setConfiguration (CONFIGURATION_RCSERVO_INPUT)
#Enable the servo channel

err = stem.servo[0].setEnable (1)

#Set servo to middle/neutral position

err = stem.servo[0].getPosition (&pPosition)

. J

3.1.13 Relay Entity

API Documentation: [cpp] [python] [.NET] [LabVIEW]
The Relay entity is a simple class which allows the enabling and disabling of a specified relay.

Channel Enable (Get/Set)

relay [index] . setEnable => (unsigned char) enable
relay [index] . getEnable <= (unsigned char) enable

Enables the relay channel for the specified index

Get Voltage (Get)

[relay [index] . getVoltage <= (unsigned char) voltage]

Returns the voltage of the specified index.

Code Examples

C++

// All commands return aErr values when errors are encountered and aErrNone on
// success. Get calls will fill the variable with the returned value.

err = stem.relay[0].setEnable(1);
err = stem.relay[l].setEnable(1);

(continues on next page)

352 Chapter 3. API Reference

BrainStem Reference Manual, Release 2.11.1

(continued from previous page)

err = stem.relay[0].getEnable (&enable);
err = stem.relay[l].getEnable (&enable);

err = stem.relay[0].getVoltage (&voltage);
err = stem.relay[l].getVoltage (&voltage);

err = stem.relay[0].setEnable (0);
err = stem.relay[l].setEnable (0);
Python

err = stem.relay[0].setEnable(1);
err = stem.relay[l].setEnable(1);

result = stem.relay[0].getEnable ()
print result.value

result = stem.relay[l].getEnable ()
print result.value

voltage = stem.relay[0].getVoltage();
print voltage.value

voltage = stem.relay[l].getVoltage();
print voltage.value

err stem.relay[0] .setEnable (0);
err = stem.relay[l].setEnable (0);

3.1.14 Signal Entity

API Documentation: [cpp] [python] [.NET] [LabVIEW]

SignalClass. Interface to digital pins configured to produce square wave signals. This class is designed to allow
for square waves at various frequencies and duty cycles. Control is defined by specifying the wave period as
(T3Time) and the active portion of the cycle as (T2Time). See the entity overview section of the reference for
more detail regarding the timing.

Signal entity to Digital entity mapping varies from device to device. Please refer to the datasheet.

Timing

Set/Get enable

signal [index] . getEnable <= (unsigned char) enable
signal [index] . setEnable => (unsigned char) enable

Enables the Signal Entity for a given index.

3.1. BrainStem Entities 353

BrainStem Reference Manual, Release 2.11.1

Signal Entity Timing Diagram

5 1 5 1

Period ' Period :

" """"""""" 1F| 1’ """"""""" 1

t3 ' t3 '

1 1

1||"I::lut 1 1

1 1

1 1

S pen o LR B Ta e e :

t1 t2 . & t2 :

1 1

1 1

1 1

1 1

e 1 1

Set/Get T3 Time

signal [index] . getT3Time <= (unsigned int) t3_nsec
signal [index] . setT3Time => (unsigned int) t3_nsec

The T3 time defines the period of the waveform in nano seconds.

Set/Get T2 Time

signal [index] . getT2Time <= (unsigned int) t2_nsec
signal [index] . setT2Time => (unsigned int) t2_nsec

The T2 time defines the high period of the waveform in nano seconds.

Set/Get invert

signal [index] . getInvert <= (unsigned char) invert
signal [index] . setInvert => (unsigned char) invert

J

Inverts the meaning of the T2 time. When inverted the T2 time will represent the time in nano seconds that the

waveform is low.

354 Chapter 3. API Reference

BrainStem Reference Manual, Release 2.11.1

Code Examples

C++

//Setup 10Hz Signal Output with 50% Duty Cycle

err = stem.digital[0].setConfiguration(digitalConfigurationSignalOutput) ;
err = stem.signal[0].setT2Time (50000000) ;

err = stem.signal[0].setT3Time (100000000) ;

err = stem.signal[0].setEnable(1);

//Setup Signal as input and calculate the duty cycle.

err = stem.digital[4].setConfiguration(digitalConfigurationSignalInput);
err = stem.signalf4].getT2Time (&t2Time) ;

err = stem.signal[4].getT3Time (&t3Time) ;

double dutyCycle = ((double)t2Time / t3Time) * 100;

Python

#SeLup 10Hz Signal Output with 50% Duty Cycle

err = stem.digital[0].setConfiguration(digitalConfigurationSignalOutput) ;
err = stem.signal[0].setT2Time (50000000) ;

err = stem.signal[0].setT3Time (100000000) ;

err = stem.signal[0].setEnable(1);

#Setup Signal as input and calculate the duty cycle.

err = stem.digital[4].setConfiguration(digitalConfigurationSignalInput);
t2Time = stem.signal[4].getT2Time () ;

t3Time = stem.signal[4].getT3Time () ;

dutyCycle = (t2Time.value / t3Time.value) * 100;

3.1.15 Store Entity

API Documentation: [cpp] [python] [.NET] [LabVIEW]

Every BrainStem module has one or more stores. Stores are the BrainStem equivalent of a filesystem. Stores
are broken up into a number of slots, each of which can be thought of as a file. A Store generally represents a
specific type of storage. Flash or internal, RAM, or SD if the BrainStem includes an SD slot. The most common
usage of slots and stores is for the storage of reflex code that will run on the BrainStem module. Additionally
Bulk capture of Analog data can write to a slot within a store. Slots within the internal store can be set up as
boot slots by setting the appropriate slot number in the system configuration. See the :doc:” System <system>"
entity for more information about setting a boot slot.

The number and type of stores is Model specific. Details about the number of slots per store, and available
stores can be found in the data sheets for specific models.

There are a number of commands for manipulating stores, which are detailed below. Many of the store com-
mands are only accessible from host API’s and Ul applications, however commands relating to enabling reflex
files in slots are accessible from the reflex language.

3.1. BrainStem Entities 355

BrainStem Reference Manual, Release 2.11.1

Get Slot State (Get)

[store [index] . getSlotState <= (unsigned char) state }

For slots which hold reflexes, this read only command returns whether the slot is currently enabled or not. 1 is
enabled 0 is disabled. This command can be called from a reflex.

Load Slot (Write)

[store [index] . loadSlot => (slot, byte buffer, buffer length)]

This command writes a data buffer into a slot for the given store. It is only available from host side API’s.

Unload Slot (Read)

[store [index] . unloadSlot <= (slot, byte buffer, max buffer size, length read)]

This command reads the slot in the given store into the byte buffer. The length
will never be more than the max buffer size given, but may be less if the slot contents were shorter than
max buffer length.

Slot Enable (Set)

[store [index] . slotEnable => (unsigned char) slot }

This command enables the reflex file in the given store and slot. This command is accessible from the reflex
language.

Slot Disable (Set)

[store [index] . slotDisable => (unsigned char) slot }

This command disables the refiex file in the given store and slot. This command is accessible from the reflex
language.

Slot Capacity (Get)

[store [index] . slotCapacity (unsigned char) slot <= (unsigned short) capacity }

This command gets the maximum capacity of the given slot for the store. This command is accessible from the
reflex language.

356 Chapter 3. API Reference

BrainStem Reference Manual, Release 2.11.1

Slot Size (Get)

[store [index] . slotSize (unsigned char) slot <= (unsigned short) size }

This command gets the current size of the data in the given slot for the store. This can be the size in bytes of
the reflex byte code file, or the data size for a bulk capture.

Code Examples

C++

// All commands return akErr values when errors are encountered and aErrNone on
// success.

stem.store[0] .getSlotState (3, state); // gets the state of slot 3 in the internal.
wstore.

stem.store[0] .loadSlot (3, buffer, length); // loads the data in buffer.
stem.store[1] .unloadSlot (0, buffer, 300, length); // unloads at most 300 bytes from.
wthe 1st RAM slot.

stem.store[0] .enableSlot (1) ;

stem.store[0] .disableSlot (1);

stem.store[0] .getSlotCapacity (1, size); // gets the max size of the slot.

]
1
1
Stem.store[0] .getSlotSize (1, size); // gets the current size of the data in the slot.

Refiex

stem.store[0] .getSlotState (3, state);
stem.store[0] .enableSlot (3);
stem.store[0] .disableSlot (3);
stem.store[0] .getCapacity (1, capacity);
stem.store[0] .getSize (1, size);

Python

' Y
res = stem.store[0].getSlotState (3) #res.value is the state of slot 3 in the internal.
wstore

stem.store[0] .loadSlot (3, buffer, length) # loads length bytes from buffer to slot 3
res = stem.store[l].unloadSlot (0) # res.value is a tuple of (str/bytes/int) of the.

wdata in slot 0 and the length
stem.store[0] .enableSlot (3)
stem.store[0] .disableSlot (3)
res = stem.store[0].getCapacity(l) #res.value is the max size of the slot
res = stem.store[0].getSize(l) #res.value is the current size of the data in slot 1

3.1. BrainStem Entities 357

BrainStem Reference Manual, Release 2.11.1

3.1.16 System Entity

API Documentation: [cpp] [python] [[NET] [LabVIEW]

Every BrainStem module includes a single system entity. The system entity allows the retrieval and manipula-
tion of configuration settings like the module address and input voltage, control over the user LED, as well as
other functionality.

System save

[system . save => (void) }

BrainStem configuration settings are stored in volatile memory until the save command is executed. Settings
such as the BootSlot, and changes to the Module or Router address will not persist across resets unless fol-
lowed by a call to:

System reset (Set)

[system . reset => (void) }

Calling system.reset () will reset the BrainStem module just as if the reset button were pressed.

User LED

system . setLED => (unsigned char) state
system . getLED <= (unsigned char) state

Gets or Sets the state of the User LED. Setting LED with a value of 1 turns the User LED on and setting itto 0
turns it off.

LED Brightness (Get/Set)

system . setLEDMaxBrightness => (unsigned char) value
system . getLEDMaxBrightness <= (unsigned char) value

Gets or Sets the scaling factor for the brightness of all LEDs on the system. The brightness is set to the ratio of
this value compared to 255 (maximum). The colors of each LED may be inconsistent at low brightness levels.

Note that if the brightness is set to zero and the settings are saved, then the LEDs will no longer indicate whether
the system is powered on. When troubleshooting, the user configuration may need to be manually reset in order
to view the LEDs again.

358 Chapter 3. API Reference

BrainStem Reference Manual, Release 2.11.1

Boot Slot (Get/Set)

system . setBootSlot => (unsigned char) slot
system . getBootSlot <= (unsigned char) slot

BrainStem modules can be configured to enable a reflex file at boot. The reflex file must be loaded into a slot in
the internal store. Setting the boot slot to the value 255 will disable on boot functionality. For more information
about stores and slots please see the store section of the reference manual. For more information about reflexes
please see the Reflex section of the manual.

Input Voltage (Get)

[system . getInputVoltage <= (unsigned int) inputVoltage }

The input voltage system command is a read only command and will return the input supply voltage of the
BrainStem module in micro volts.

Serial Number (Get)

[system . getSerialNumber <= (unsigned int) serialNumber }

Read only command that returns the unique module serial number. The returned value is an unsigned int. In
Acroname Ul applications the serial number is generally represented as an 8 character Hexadecimal number.

BrainStem Model (Get)

[system . getModel <= (unsigned char) BrainStem model.]

Read only command that returns the model of the BrainStem module.

Hardware Version (Get)

[system . getHardwareVersion <= (unsigned int) Hardware Version. }

Read only command that returns the hardware version of the module. The content of the hardware version
is specific to each Acroname product and used to indicate behavioral differences between product revisions.
The codes are not well defined and may change at any time.

Version (Get)

[system . getVersion <= (unsigned int) version number. }

Read only command that returns the version number of the BrainStem firmware. This is a packed format. The
aversion.h C API canrepresent this version in a human readable manner. The format of the version number
is 3 digits separated by ..

[major . minor . patch }

3.1. BrainStem Entities 359

BrainStem Reference Manual, Release 2.11.1

Module Address (Get)

[system . getModule <= (unsigned char) module :

The module address is the number used to address the module on the BrainStem network and from the host.
This is a combination of the module base address, any software offset that is applied and any hardware module
offset.

Module Base Address (Get)

[system . getModuleBaseAddress <= (unsigned char) module }

The module base address is the default or base address of the module, before any offsets are applied.

Module Software Offset (Set/Get)

system . setModuleSoftwareOffset => (unsigned char) software offset

system . getModuleSoftwareOffset <= (unsigned char) software offset

The module software offset is added to the module’s base address and any hardware offsets to determine the
final module address of the module. This setting is not applied until saved and the module has been reset.

Module Hardware Offset (Get)

[system . getModuleHardwareOffset <= (unsigned char) module hardware offset }

MTM BrainStems have a set of module offset pins which will adjust the module address via hardware. See
the data sheet for your MTM module for more information about these hardware settings. The module offset
command is a read only command that returns the offset that will be added to the base module address and any
software offset to determine the operating address of the MTM BrainStem module. Changes to the hardware
offset are applied when the Device is reset.

Router Address (Get/Set)

system . setRouter => (unsigned char) module
system . getRouter <= (unsigned char) module

The BrainStem router address refers to the BrainStem module address of the module that will coordinate com-
munication with the host system. This setting is not applied until it is saved and the module has been reset.

Changing the router address can have negative consequences for communicating with the BrainStem network.
Please see the appendix on the BrainStem Network setup for more information.

» Appendix: Brainstem Universal Entity Interface

» Appendix: The BrainStem Communication Protocol

360 Chapter 3. API Reference

BrainStem Reference Manual, Release 2.11.1

HeartBeat Interval (Get/Set)

system . setHBInterval => (unsigned char) interval
system . getHBInterval <= (unsigned char) interval

Gets or sets the heartbeat interval to control the amount of heartbeat traffic. This value is set at approximately
1/50th of a second resolution. Heartbeat packets are handled by the underlying system, and are indicated on
the brainstem by the blinking green heartbeat LED. Ul applications also have Heartbeat indicators. Default
value is 12.

System Name (Get/Set)

system . getName <= (unsigned char[]) name
system . setName => (unsigned char[]) name

Allows for setting a friendly name to the device with a 32 character limit.

Code Examples

C++

// Get requests fill the parameter with the current system value upon success.
// All commands return aErr values when errors are encountered and aErrNone on
// success.

stem.system.save () ;

stem.system.reset () ;

stem.system.setLED (1) ;
stem.system.getLED (state) ;
stem.system.setLEDMaxBrightness (255) ;
stem.system.getLEDMaxBrightness (value) ;
stem.system.setBootSlot (5);
stem.system.getBootSlot (slot);
stem.system.getInputVoltage (voltage) ;
stem.system.getModule (address) ;
stem.system.getRouter (address) ;
stem.system.setRouter (6) ;
stem.system.getModuleBaseAddress (address) ;
stem.system.setModuleSoftwareOffset (16);
stem.system.getModuleSoftwareOffset (offset);
stem.system.getModuleHardwareOffset (offset) ;
stem.system.getSerialNumber (serialNumber) ;
stem.system.getModel (model) ;
stem.system.getHardwareVersion (hardwareVersion) ;
stem.system.getVersion (version) ;
stem.system.getHBInterval (interval);
stem.system.setHBInterval (interval) ;

Python

stem.system.save ()
stem.system.reset ()
stem.system.setLED (1)

(continues on next page)

3.1. BrainStem Entities 361

BrainStem Reference Manual, Release 2.11.1

(continued from previous page)

state = stem.system.getLED ()

print state.value
stem.system.setLEDMaxBrightness (255) ;
brightness = stem.system.getLEDMaxBrightness();
print brightness.value
stem.system.setBootSlot (5)

slot = stem.system.getBootSlot ()

print slot.value

inputVoltage = stem.system.getInputVoltage ()
print inputVoltage.value

module = stem.system.getModule ()

print module.value

address = stem.system.getModuleBaseAddress () ;
print address.value
stem.system.setModuleSoftwareOffset (16);

offset = stem.system.getModuleSoftwareOffset ();
print offset.value

offset = stem.system.getModuleHardwareOffset ();
print offset.value

serialNumber = stem.system.getSerialNumber ()
print serialNumber.value

model = stem.system.getModel ()

hardwareVersion = stem.system.getHardwareVersion ()
print hardwareVersion.value

version = stem.system.getVersion ()

print brainstem.version.get_version_string(version.value)
hbInterval = stem.system.getHBInterval ()

print hbInterval.value
stem.system.setHBInterval (12)

Reflex

// Get requests fill the parameter with the current system value upon success.

stem.system.save () ;

stem.system.reset () ;

stem.system.setLED (1) ;
stem.system.getLED (state) ;
stem.system.setBootSlot (5) ;
stem.system.getBootSlot (slot) ;
stem.system.getInputVoltage (voltage) ;
stem.system.getModule (address) ;
stem.system.getRouter (address) ;
stem.system.setRouter (6) ;
stem.system.getModuleBaseAddress (address) ;
stem.system.setModuleSoftwareOffset (16);
stem.system.getModuleSoftwareOffset (offset);
stem.system.getModuleHardwareOffset (offset) ;
stem.system.getSerialNumber (serialNumber) ;
stem.system.getModel (model) ;
stem.system.getHardwareVersion (hardwareVersion) ;
stem.system.getVersion (version) ;
stem.system.getHBInterval (interval);
stem.system.setHBInterval (interval);

362 Chapter 3. API Reference

BrainStem Reference Manual, Release 2.11.1

3.1.17 Temperature Entity

API Documentation: [cpp] [python] [[NET] [LabVIEW]

Certain modules have a temperature measurement available. The temperature entity gives access to these
measurements. Check your module datasheet to see if your module has a temperature entity.

Temperature (Get)

[temperature [index] . getTemperature => (int) microcelsius

Returns a temperature measurement in microcelsius.

Code Examples

C++

// All commands return akErr values when errors are encountered and aErrNone on
// success. Get commands fill the variable with the returned value.

stem.temperature[0] .getTemperature (microcelsius) ;

Reflex

//Get commands fill the variable with the returned value.

stem.temperature[0] .getTemperature (microcelsius) ;

Python

microcelcius = stem.temperature[0].getTemperature () ;
print microcelcius.value

3.1.18 Timer Entity

API Documentation: [cpp] [python] [.NET] [LabVIEW]

The Timer entity provides simple scheduling for events in the reflex system. BrainStem modules generally
contain between 4 and 8 timers depending on the module. The most common usage is to write a timer reflex
and load and enable it on the BrainStem module, then an expiration can be set for the timer, and this reflex
code will be executed when the timer expires.

Timers have two modes, single which executes just once and repeat which executes until the expiration is set
to zero or the mode is changed to single.

3.1. BrainStem Entities 363

BrainStem Reference Manual, Release 2.11.1

Expiration (Get/Set)

timer [index] . getExpiration <= (unsigned int) microseconds
timer [index] . setExpiration => (unsigned int) microseconds

Gets or sets the next expiration for this timer in microseconds. If zero, the timer is not currently set to expire in
the future.

Mode (Get/Set)
timer [index] . getMode <= (unsigned char) mode
timer [index] . setMode => (unsigned char) mode

Gets or sets the current timer mode. 1 for repeat mode and 0 for single mode.

When in repeat mode an expiration will occur every n microseconds when n it the expiration setting of the timer.
To stop a repeat timer, set its expiration to 0.

When in single mode (The default) setting a non-zero expiration will cause the timer to trigger a single time after
the expiration setting in microseconds. If a timer is set, resetting its expiration to zero will clear the timer, and
no reflex code will be triggered.

Reflex example

The following reflex code would need to be compiled with arc, loaded onto the BrainStem module and enabled
to be executed. See the Reflex Language reference for more information about working with reflex files.

reflex timer[0].expiration (void) {
stem.system.setLED (on) ;

Code Examples

C++

// All commands return aErr values when errors are encountered and aErrNone on
// success. Get commands fill the variable with the returned value.

stem.timer [
stem.timer [
stem.timer [
stem.timer [

0] .getExpiration (uSecs) ;

0] .setExpiration(1000000); // Sets the timer for 1 second in the future.
0] .getMode (mode) ;

0] .setMode (timerModeRepeat) // timerModeRepeat is a convenience define.

364 Chapter 3. API Reference

BrainStem Reference Manual, Release 2.11.1

Reflex

// Get commands fill the variable with the returned value.

stem.timer[0] .getExpiration (uSecs) ;

stem.timer[0] .setExpiration(1000000); // Sets the timer for 1 second in the future.
stem.timer [0] .getMode (mode) ;

stem.timer[0] .setMode (timerModeRepeat) // timerModeRepeat is a convenience define.
Python

uSecs = stem.timer[3].getExpiration ()

stem.timer[3] .setExpiration (1000000) # Sets the timer for 1 second in the future.
mode = stem.timer[3].getMode ()

stem.timer[3].setMode (timerModeRepeat) // timerModeRepeat is a convenience define.

3.1.19 UART Entity

API Documentation: [cpp] [python] [.NET] [LabVIEW]

The UART entity is a class which allows the configuration of a specified uart port.

Channel Enable (Get/Set)

uart [index] . setEnable => (unsigned char) enable
uart [index] . getEnable <= (unsigned char) enable

Enables the uart channel for the specified index.

Change Baudrate (Get/Set)

uart [index] . setBaudRate => (unsigned int) rate
uart [index] . getBaudRate <= (unsigned int) rate

Allows for get and set of the uart channel’s baudrate.

Change Protocol (Get/Set)

uart [index] . setProtocol => (unsigned char) protocol
uart [index] . getProtocol <= (unsigned char) protocol

Allows for get and set of the uart channel’s protocol if there are different protocols.

3.1. BrainStem Entities 365

BrainStem Reference Manual, Release 2.11.1

Code Examples

C++

// All commands return aErr values when errors are encountered and aErrNone on
// success. Get calls will fill the variable with the returned value.

err = stem.uart[0].setEnable(1);

err = stem.uart[1].setEnable(1);

err = stem.uart[0] .getEnable (&enable);
err = stem.uart[1l].getEnable (&enable);
err = stem.uart[0].setEnable(0);

err = stem.uart[1l].setEnable(0);
Python

err = stem.uart[0].setEnable(1);

err = stem.uart[1].setEnable(1l);

result = stem.uart[0].getEnable ()
print result.value

result = stem.uart[1l].getEnable ()
print result.value

err = stem.uart[0].setEnable(0);
err stem.uart[1].setEnable (0);

3.1.20 USB Entity

API Documentation: [cpp] [python] [.NET] [LabVIEW]

The USB Entity provides the software control interface for USB related features. This entity is supported by
BrainStem products which have programmatically controlled USB features.

Port Enable/Disable (Set)

usb . setPortEnable => (unsigned char) channel
usb . setPortDisable => (unsigned char) channel

Enables or Disables the given downstream channel. This call enables or disables data and power together for
the given channel.

366 Chapter 3. API Reference

BrainStem Reference Manual, Release 2.11.1

Data Enable/Disable (Set)

usb . setDataEnable => (unsigned char) channel
usb . setDataDisable => (unsigned char) channel

Enables or Disables data only for given downstream channel. This call enables or disables the usb data (+)
and data (-) lines for the given channel.

Calls to this command have no side effects on the power connections for the channel. If power was enabled
before the call then it will still be enabled after the call to setDataEnable/Disable.

High Speed Data Enable/Disable (Set)

usb . setHiSpeedDataEnable => (unsigned char) channel
usb . setHiSpeedDataDisable => (unsigned char) channel

Enables or Disables Hi Speed data only for given downstream channel. This call enables or disables the usb
data (+) and data (-) lines for the given channel.

Calls to this command have no side effects on the power connections for the channel. If power was enabled
before the call then it will still be enabled after the call to setSuperSpeedDataEnable/Disable.

Super Speed Data Enable/Disable (Set)

usb . setSuperSpeedDataEnable => (unsigned char) channel
usb . setSuperSpeedDataDisable => (unsigned char) channel

Enables or Disables Super Speed (3.0) data only for given downstream channel. This call enables or disables
the usb data (+) and data (-) lines for the given channel.

Calls to this command have no side effects on the power connections for the channel. If power was enabled
before the call then it will still be enabled after the call to setSuperSpeedDataEnable/Disable.

Power Enable/Disable (Set)

usb . setPowerEnable => (unsigned char) channel
usb . setPowerDisable => (unsigned char) channel

Enables or Disables power only for given downstream channel. This call enables or disables the usb power
connection for the given channel.

Callls to this command have no side effects on the data connections for the channel. If data was enabled before
the call then it will still be enabled after the call to setPowerEnable/Disable.

3.1. BrainStem Entities 367

BrainStem Reference Manual, Release 2.11.1

port Voltage/Current (Get)

usb . getPortVoltage (unsigned char) channel <= (unsigned int) microvolts
usb . getPortCurrent (unsigned char) channel <= (unsigned int) microamps

Returns the last read values for Voltage (in microvolts) and Current (in microamps) for the given channel.

Hub Mode (Get/Set)

usb . getHubMode <= (unsigned int) state
usb . setHubMode => (unsigned int) state

Gets/Sets the hubs mode in the form of a big mapped representation. See the product datasheet for state
mapping. Usually represents the downstream ports power and data lines enable/disable state.

Hub State (Get)

Note: This function has been removed in version 2.5. This functionality is moved to Port State.

Hub Error Status (Get)

Note: This function has been removed in version 2.5. This functionality is moved to Port Error.

Clear Port Error Status (Set)

[usb . clearPortErrorStatus => (unsigned char) channel

Clears the error status for the given channel

Upstream Mode (Get/Set)

usb . getUpstreamMode <= (unsigned char) mode
usb . setUpstreamMode => (unsigned char) mode

Gets/Sets the mode of the upstream USB ports. The mode parameter can be defined as the following:

Value Definitions Hub Upstream Mode Descriptions
0 usbUpstreamModePort0 Force upstream port 0 to be selected
1 usbUpstreamModePort1 Force upstream port 1 to be selected
2 usbUpstreamModeAuto Automatically detect upstream port
255 usbUpstreamModeNone Disconnect both upstream ports

368 Chapter 3. API Reference

BrainStem Reference Manual, Release 2.11.1

Upstream State (Get)

[usb . getUpstreamState <= (unsigned char) state }

Gets the upstream switch state for the USB upstream ports. Returns none if no ports are plugged in, port O if
the mode is set correctly and a cable is plugged into port 0, and port 1 if the mode is set correctly and a cable
is plugged into port 1

Enumeration Delay (Get/Set)

usb . getEnumerationDelay <= (unsigned int) ms_delay
usb . setEnumerationDelay => (unsigned int) ms_delay

Gets/Sets the inter-port enumeration delay in milliseconds. The enumeration delay sequentially enables data
and power to downstream ports after the defined delay time. After setting and saving this parameter all down-
stream ports will be initially disabled upon system power-on or reset. Similarly, if there is no upstream connec-
tion, all downstream ports will be disabled. When an upstream connection is applied, or after the system boots,
the system will wait for the defined delay time and enable the lowest port number. The system will then wait for
the defined delay time and then enable the next highest port. This behavior repeats until all ports are enabled.

Inconsistent behavior from race conditions may occur if enumeration delay is used in conjunction with Reflex
programs which also manipulate the downstream port states. Care should be taken to ensure no conflicts
between the enumeration delay and Reflex programs.

Note: This setting should be saved with a stem.system.save() call.

Upstream Boost Mode (Get/Set)

usb . getUpstreamBoostMode <= (unsigned char) setting
usb . setUpstreamBoostMode => (unsigned char) setting

Gets/Sets the upstream boost mode. Boost mode increase the drive strength of the USB data signals (power
signals are not changed). Boosting the data signal strength may help to overcome connectivity issues when
using long cables or connecting through “pogo” pins. Modes: 0 = no boost, 1 = 4% boost, 2 = 8% boost, 3 =
12% boost.

Note: This setting is not applied until a stem.system.save() call and power cycle of the hub. Setting is then
persistent until changed or the hub is reset. After reset, default value of 0% boost is restored.

3.1. BrainStem Entities 369

BrainStem Reference Manual, Release 2.11.1

Down Stream Boost Mode (Get/Set)

usb . getDownstreamBoostMode <= (unsigned char) setting
usb . setDownstreamBoostMode => (unsigned char) setting

Gets/Sets the Downstream boost mode. Boost mode increase the drive strength of the USB data signals
(power signals are not changed). Boosting the data signal strength may help to overcome connectivity issues
when using long cables or connecting through “pogo” pins. Modes: 0 = no boost, 1 = 4% boost, 2 = 8% boost,
3 =12% boost.

Note: This setting is not applied until a stem.system.save() call and power cycle of the hub. Setting is then
persistent until changed or the hub is reset. After reset, default value of 0% boost is restored.

Port Current Limit (Get/Set)

usb . setPortCurrentlLimit => (unsigned char) channel, (unsigned int) microamps
usb . getPortCurrentlLimit (unsigned char) channel <= (unsigned int) microamps

Gets/Sets the current limit for the downstream channel. There are a number of settings for current limits ranging
from 100 mAmps to 2.5 amps. See the USB hub datasheet for specific settings information.

Port Mode setting (Get/Set)

usb . setPortMode => (unsigned char) channel, (unsigned char) mode
usb . getPortMode (unsigned char) channel <= (unsigned char) mode

Gets/Sets the Port mode for the channel specified. The portmode is a bitmapped setting. Device specific mode
options are listed in the data-sheet. There is a unifed listing of all port mode bits at usbPortMode within USB
Entity.

Port State (Get)

[usb . getPortState (unsigned char) channel <= (unsigned char) mode }

Gets the Port state for the channel specified. State options for the device are listed in the device data-sheet.

Port Error (Get)

[usb . getPortError (unsigned char) channel <= (unsigned char) mode]

Gets the Port error status for the channel specified. Error status for the device are listed in the device data-
sheet.

370 Chapter 3. API Reference

BrainStem Reference Manual, Release 2.11.1

System Temperature (Get)

Note: This function has been removed in version 2.5. This functionality is moved to temperature.

Connect Mode setting (Get/Set)

usb . setConnectMode => (unsigned char) channel, (unsigned char) mode
usb . getConnectMode (unsigned char) channel <= (unsigned char) mode

Gets/Sets the connect mode for the channel specified. Check the device datasheet for more information re-
garding the use of this function.

CC1/CC2 Enable/Disable setting (Get/Set)

usb . setCC[1l|2]Enable => (unsigned char) channel, (unsigned char) DbEnable
usb . getCC[1|2]Enable (unsigned char) channel <= (unsigned char) bEnable

Gets or sets the enabled status of the CC1/CC2 lines.

CC1/CC2 Current (Get)

[usb . getCC[l|2]Current (unsigned char) channel <= (unsigned char) microAmps

Gets the current on the CC1/CC2 line in microAmps.

CC1/CC2 Voltage (Get)

[usb . getCC[l|2]Voltage (unsigned char) channel <= (unsigned char) microVolts

Gets the voltage on the CC1/CC2 lines in microVolts.

SBU Enable/Disable setting (Get/Set)

usb . setSBUEnable => (unsigned char) channel, (unsigned char) DbEnable
usb . getSBUEnable (unsigned char) channel <= (unsigned char) bEnable

Gets or sets the enabled status of the SBU lines.

3.1. BrainStem Entities 371

BrainStem Reference Manual, Release 2.11.1

Cable Flip (Get/Set)

usb . setCableFlip => (unsigned char) channel, (unsigned char) DbEnable
usb . setCableFlip (unsigned char) channel <= (unsigned char) bEnable

Change the orientation of the common side to Mux side cable connection.

Code Examples

C++

// All commands return aErr values when errors are encountered and aErrNone on
// success. Get commands fill the variable with the returned value.

stem.usb.setPortEnable (1) ;
stem.usb.setPortDisable (2);
stem.usb.setDataEnable (0) ;

Reflex

// Get commands fill the variable with the returned value.

stem.usb.setPortEnable (1) ;
stem.usb.setPortDisable (2);
stem.usb.setDataEnable (0) ;

Python

stem.usb.setPortEnable (1)
stem.usb.setPortDisable (2)
stem.usb.setDataEnable (0)
stem.usb.setDataDisable (1)
stem.usb.setPowerEnable (0)
stem.usb.setPowerDisable (0)

microamps = stem.usb.getPortCurrent (0)
print microamps.value
microvolts = stem.usb.getPortVoltage (0)

print microvolts.value
stem.usb.setPortCurrentLimit (0, limit_setting)
state = stem.usb.getHubState ()

print state.value

372 Chapter 3. API Reference

BrainStem Reference Manual, Release 2.11.1

3.1.21 USB System Entity

API Documentation: [cpp] [python] [[NET] [LabVIEW]

The USBSystem class provides high level control of the lower level Port Entity

Upstream Connection (Get/Set)

usbsystem . setUpstream => (unsigned char) enable
usbsystem . getUpstream <= (unsigned char) enable

Many acroname products have multiple upstream port selections. This function is used to access and control
that functionality.

Upstream Connection HighSpeed (Get/Set)

usbsystem . setUpstreamHS => (unsigned char) enable
usbsystem . getUpstreamHS <= (unsigned char) enable

Many acroname products have multiple upstream port selections, some even have the ability to move just
the HighSpeed or SuperSpeed signals. This function is used to access and control that functionality for the
HighSpeed signals only.

Upstream Connection SuperSpeed (Get/Set)

usbsystem . setUpstreamSS => (unsigned char) enable
usbsystem . getUpstreamSS <= (unsigned char) enable

Many acroname products have multiple upstream port selections, some even have the ability to move just
the HighSpeed or SuperSpeed signals. This function is used to access and control that functionality for the
SuperSpeed signals only.

Enumeration Delay (Get/Set)

usbsystem . getEnumerationDelay <= (unsigned int) ms_delay
usbsystem . setEnumerationDelay => (unsigned int) ms_delay

Gets/Sets the inter-port enumeration delay in milliseconds. The enumeration delay sequentially enables data
and power to downstream ports after the defined delay time. After setting and saving this parameter all down-
stream ports will be initially disabled upon system power-on or reset. Similarly, if there is no upstream connec-
tion, all downstream ports will be disabled. When an upstream connection is applied, or after the system boots,
the system will wait for the defined delay time and enable the lowest port number. The system will then wait for
the defined delay time and then enable the next highest port. This behavior repeats until all ports are enabled.

Inconsistent behavior from race conditions may occur if enumeration delay is used in conjunction with Reflex
programs which also manipulate the downstream port states. Care should be taken to ensure no conflicts
between the enumeration delay and Reflex programs.

3.1. BrainStem Entities 373

BrainStem Reference Manual, Release 2.11.1

Enabled List (Get/Set)

usbsystem . getEnabledList <= (unsigned int) list
usbsystem . setEnabledList => (unsigned int) list

The enabled list function provides state and control over all lower ports enables. It is equivalent to calling calling
get/set enabled from the PortClass on all ports at once. The returned variable is in a bit mapped format. Please
see the product data sheet for specific bit meanings.

Mode List (Get/Set)

usbsystem . getModelList <= (unsigned int [NUM_PORTS]) list
usbsystem . setModelist => (unsigned int [NUM_PORTS]) list

The mode list function gives you access and control to all lover level port modes. It is equivalent to calling
get/set mode from the PortClass on all ports at once.

State List (Get)

usbsystem . getModelList <= (unsigned int [NUM_PORTS]) list
usbsystem . setModelist => (unsigned int [NUM_PORTS]) list

The state list function gives you access and control to all lover level port states. It is equivalent to calling get/set
state from the PortClass on all ports at once.

Power Behavior (Get/Set)

usbsystem . getPowerBehavior <= (unsigned char) behavior
usbsystem . setPowerBehavior => (unsigned char) behavior

The power behavior controls how power will be allocated to each lower level port. This behavior comes into
play when the requested power of the system exceeds the available power. i.e. first come first server, even
distribution, priority list. See the product datasheet for specific implementations.

Power Behavior Config (Get/Set)

usbsystem . getPowerBehaviorConfig <= (unsigned int) config
usbsystem . setPowerBehaviorConfig => (unsigned int) config

Some power behaviors require a list of parameters in order to operate. For instance in priority list mode the
user can supply a list of port indexes to priorities for power. This feature is product specific and users should
consult the manual for further details.

374 Chapter 3. API Reference

BrainStem Reference Manual, Release 2.11.1

Data Role Behavior (Get/Set)

usbsystem . getDataRoleBehavior <= (unsigned char) behavior
usbsystem . setDataRoleBehavior => (unsigned char) behavior

Some Type-C ports are capable of being dual role ports (DRP). Meaning they are capable of being either a
host or a device. The behavior defined here will determine if that is allowed, what happens if it is, and what
occurs when a host goes away. Examples are: first come first serve, priority list, static/fixed selection, etc. See
the product datasheet for specific implementations.

Data Role Behavior Config (Get/Set)

usbsystem . getDataRoleBehaviorConfig <= (unsigned int) config
usbsystem . setDataRoleBehaviorConfig => (unsigned int) config

Many of the data role behaviors require a list of parameters in order to operate. For instance in a static/fixed
mode the config would indicate what port is the upstream connection.

Data HighSpeed Max Datarate (Get/Set)

usbsystem . setDataHSMaxDatarate <= (unsigned int) config
usbsystem . getDataHSMaxDatarate => (unsigned int) config

The Max Datarate APIs will limit the device to a maximum specified datarate for the specific signal set. This
API modifies the max datarate on the USB HighSpeed signals.

Enumeration Name Description

0 None Configure HighSpeed Signals to no connection

1 Low Speed Configure HighSpeed Signals to a maximum datarate of 1.5Mbps
2 Full Speed Configure HighSpeed Signals to a maximum datarate of 12Mbps
3 High Speed Configure HighSpeed Signals to a maximum datarate of 480Mbps

Data SuperSpeed Max Datarate (Get/Set)

usbsystem . setDataSSMaxDatarate <= (unsigned int) config
usbsystem . getDataSSMaxDatarate => (unsigned int) config

The Max Datarate APIs will limit the device to a maximum specified datarate for the specific signal set. This
API modifies the max datarate on the USB SuperSpeed signals.

Enumeration Name Description

0 None Configure SuperSpeed Signals to no connection

1 Super Speed Configure SuperSpeed Signals to a maximum datarate of 5Gbps
2 Super Speed Plus Configure SuperSpeed Signals to a maximum datarate of 10Gbps

3.1. BrainStem Entities 375

BrainStem Reference Manual, Release 2.11.1

Override (Get/Set)

usbsystem . getOverride <= (unsigned int) config
usbsystem . setOverride => (unsigned int) config

The system inherently goes towards compliant behavior, in some conditions you may not want compliant be-
havior and this is what the override bit field allows. There are the following override bits that can be set.

Bit Name Description
0 Auto Vbus Toggle This bitis used to disable the auto vbus toggle behavior on re-enumeration of
Disable the upstream port.

1 Vbus Detect Disable This bit is used to disable the requirement of an upstream connection for en-
abling the hub chip.

376 Chapter 3. API Reference

BrainStem Reference Manual, Release 2.11.1

3.2 Python API Reference

Welcome to the BrainStem Python API reference documentation. This documentation covers the Python
Acroname BrainStem module. This reference assumes that you understand the BrainStem system. If you
would like to get started using BrainStem, please see the following sections of the Reference documentation.

* BrainStem Overview
» BrainStem Terminology
» Getting Started with the BrainStem.
Next check out the python Getting Started section.

3.2.1 Getting (Quickly) Started

The BrainStem python package allows you to interact with a collection of BrainStem modules from python. The
APl is similar to both the C++ and Reflex API’s, with a few significant differences. The remainder of this section
details the structure and functionality of the python API.

Most modern operating systems come with all the tools needed to immediately install the BrainStem python
libraries and create python based applications. As such, simply download the latest development package’®,
and then use pip to install the library.

#> cd <path to extracted download>/development/python
#> pip install brainstem—*.whl

If you see errors from these commands, check the requirements and details below.

Requirements

The brainstem python package is currently compatible with python 2.7 and python 3.6 through 3.10. When
using 2.7 it is recommended that your python version be at least 2.7.9.

pip

The brainstem python package is installed via a platform specific wheel. To install these wheels you need a
relatively up to date version of pip and setuptools. If you don’t have pip installed you can install it by following
the instructions at;

https://pip.pypa.io/en/latest/installing.html

If you do have pip installed it may be helpful to update pip. To do so run the following command from your
command line. You may need to have administrator privileges on macOS and Linux. Instructions for updating
pip can be found at;

https://pip.pypa.io/en/latest/installing/#upgrade-pip

78 https://acroname.com/software/brainstem-development-kit

3.2. Python API Reference 377

https://acroname.com/software/brainstem-development-kit
https://pip.pypa.io/en/latest/installing.html
https://pip.pypa.io/en/latest/installing/#upgrade-pip

BrainStem Reference Manual, Release 2.11.1

libffi

The Brainstem python library relies on libffi, on macOS and Windows this is generally available via pip. On
Linux you may need to install libffi via your distro’s package manager.

Python development headers

Also on Linux, you may need to install the development package for python via your distro’s package manager
before you can install.

CentOS package manager

On CentOS and yum based distros the following command will install the required packages.

[$> sudo yum install libffi-devel python-devel :

Installation

Install the python package.

Note: ‘#>’ indicates that the command must be run with admin privileges on MacOS and Linux, either via
sudo or su.

[#> pip install brainstem—*.whl }

If you need to uninstall the library, the easiest way to do so is with pip.

[$> pip uninstall brainstem]

A Tour of the Python Example

To run the example, go to Development/python in the “BrainStem2 Development Kit” package and type:

£$> python brainstem_example.py }

The example requires that you have a USB BrainStem link module connected to your host computer. If you
see the following message, you probably don’t have a module connected:

Creating USB stem and connecting to first module found
Could not find a module.

Once the example starts running, it will connect to the first USBStem it finds connected to your computer and
then blink the user LED on the module.

$> python brainstem_example.py

Creating USB stem and connecting to first module found
Connecting to Module with serial number: 0x40F5849A
Flashing the user LED

378 Chapter 3. API Reference

BrainStem Reference Manual, Release 2.11.1

The following is a brief introduction interacting with the brainstem via the python interactive interpreter. The first
step is to import some modules that we’ll need later. There are multiple ways to import the brainstem package.

For this example we will use the simplest method.

£>>> import brainstem

)

See the Package Structure <package> section of the python reference for more information about the brainstem

package, and the modules it includes.

Next we discover a USBStem module, and connect to it.

>>> gspec = brainstem.discover.findFirstModule (brainstem.link.Spec.USB)
>>> print spec

LinkType: USB(serial: 0x40F5849A, module: 0)

>>> stem = brainstem.stem.USBStem()

>>> stem.connect (0x40F5849A)

Information about specific modules can be found in the Modules <Modules> section.

Now that we have created a USBStem, we can turn on the user LED using the system entity:

£>>> stem.system.setLED (1)

Finally lets blink the LED in a loop.

>>> from time import sleep
>>> for i in range(0,100):

err = stem.system.setLED(i % 2)
if err !'= 0:
print "error "$ err
break
sleep(0.5)

>>>

As you can see the call to setLED returns an error value. In this case that is an error value, that will be 0 on

success and some other number if there is an error. The brainstem library generally avoids raising exceptions,
and instead passes information via result objects, or result error codes. More information about these errors,

and the result object can be found in the Result <result> section of the python reference

Help is available from within the python interpreter, calling help() on a stem or other object will yield context

specific documentation.

>>> import brainstem
>>> help(brainstem.stem.USBStem)
Help on class USBStem in module brainstem.stem:

class USBStem(brainstem.module.Module)
Concrete Module implementation for 40Pin and MTM USBStem modules

|

|

| USBStem modules contain Analogs, Digital IO's, and I2C entities
| in addition to the system entity.
|
|
|

Method resolution order:
USBStem

3.2. Python API Reference

379

BrainStem Reference Manual, Release 2.11.1

The Acroname Team.

Support

If you are having issues, please let us know. We have a mailing list located at: support@acroname.com

3.2.2 Acroname Modules

Quick Access:

* USBHub3c

« USBHub3p

» USBHub2x4

» USBCSwitch

« MTMDAQ2

* MTMEtherStem
* MTMIOSerial
* MTMLOAD1

« MTMPM1

* MTMRelay

* MTMUSBStem
« MTMDAQ1
 EtherStem

« USBStem

Each type of BrainStem module is represented by a corresponding concrete Module implementation. The
following classes are instantiated to allow communication through to the corresponding BrainStem module
hardware.

The instantiation and subsequent connection to each module is as follows

>>> stem = USBStem()
OxXXXXXXXX is the serial number of the module.
>>> stem.connect (0xXXXXXXXX)

Connecting to the BrainStem module can take multiple forms, the simplest way to connect when you know the
module’s serial number is to call connect with the serial number, as in the above code snippet. If you don'’t
know the serial number of the module, you can perform a discovery of the modules currently connected and
print that information. For details of the connection functions API please see Connections in this reference.

380 Chapter 3. API Reference

mailto:support@acroname.com

BrainStem Reference Manual, Release 2.11.1

USBHub3c

class brainstem.stem.USBHub3c (address=6, enable auto_networking=True, model=24)
Concrete Module implementation for the USBHub3c.

The module contains the USB entity as well as the following.

Entities:

system
app[0-3]
pointers[0-3]
store[0-2]
temperature[0-2]
timer[0-7]
hub
hub.port[0-7]
rail[0-6]
pd[0-7]

usb

uart

Useful Constants:

class

BASE_ADDRESS (6)
NUMBER_OF STORES (2)
NUMBER_OF_INTERNAL_SLOTS (12)
NUMBER_OF RAM_SLOTS (1)
NUMBER_OF_TIMERS (8)
NUMBER_OF_APPS (4)
NUMBER_OF POINTERS (4)
NUMBER_OF USB_PORTS (8)
NUMBER_OF RAILS (7)
STORE_INTERNAL_INDEX (0)
STORE_RAM_INDEX (1)
STORE_EEPROM_INDEX (2)
PORT_ID_CONTROL_INDEX (6)
PORT_ID_POWER_C_INDEX (7)
NUMBER_OF PORTS (8)

Hub (module, index)

3.2. Python API Reference

381

BrainStem Reference Manual, Release 2.11.1

connect (serial_number, **kwargs)

Connect to a Module with a transport type and serial number.
Parameters
* transport (Spec. transport) - (Spec.transport): One of USB, TCPIP,
SERIAL or AETHER.
* serial_number (unsigned int) - The module serial_number to look
for.
Returns
An error result from the list of defined error codes in brainstem.result

i2c
usb entity adds minimal legacy support

Back to the top

USBHub3p

class brainstem.stem.USBHub3p (address=6, enable auto_networking=True, model=19)
Concrete Module implementation for the USBHub3p.

The module contains the USB entity as well as the following.
Entities:
* system
* app[0-3]
* pointers[0-3]
* usb
« store[0-1]
* temperature
* timer[0-7]
Useful Constants:
+ BASE_ADDRESS (6)
« NUMBER_OF_STORES (2)
« NUMBER_OF_INTERNAL_SLOTS (12)
+ NUMBER_OF_RAM_SLOTS (1)
« NUMBER_OF_TIMERS (8)
« NUMBER_OF_APPS (4)
+ NUMBER_OF_POINTERS (4)
+ NUMBER_OF_DOWNSTREAM_USB (8)
« NUMBER_OF_UPSTREAM_USB (2)
« NUMBER_OF_PORTS (12)

Bit defines for port state UInt32 use brainstem.BIT(X) from aDefs.h to get bit value. i.e if
(state & brainstem.BIT(aUSBHUB3P_USB_VBUS ENABLED))

- aUSBHUB3P_USB_VBUS_ENABLED (0)

382 Chapter 3. API Reference

BrainStem Reference Manual, Release 2.11.1

« aUSBHUB3P_USB2_DATA_ENABLED (1)

- aUSBHUB3P_USB3_DATA ENABLED (3)

- aUSBHUB3P_USB_SPEED USB2 (11)

« aUSBHUB3P_USB_SPEED_USB3 (12)

- aUSBHUB3P_USB_ERROR_FLAG (19)

- aUSBHUB3P_USB2 BOOST ENABLED (20)
- aUSBHUB3P_DEVICE_ATTACHED (23)

Bit defines for port error UInt32 use brainstem.BIT(X) from aDefs.h to get bit value. i.e if
(error & brainstem.BIT(aUSBHUB3P_ERROR_VBUS_OVERCURRENT))

« aUSBHUB3P_ERROR_VBUS_OVERCURRENT (0)

« aUSBHUB3P_ERROR_VBUS_BACKDRIVE (1)

» aUSBHUB3P_ERROR_HUB_POWER (2)

« aUSBHUB3P_ERROR_OVER_TEMPERATURE (3)
class Hub (module, index)

connect (Serial_number, **kwargs)

Connect to a Module with a transport type and serial number.
Parameters
* transport (Spec.transport) - (Spec.transport): One of USB, TCPIP,
SERIAL or AETHER.
* serial_number (unsigned int) - The module serial_number to look
for.
Returns
An error result from the list of defined error codes in brainstem.result

Back to the top

USBHub2x4

class brainstem.stem.USBHub2x4 (address=6, enable auto_networking=True,
model=17)

Concrete Module implementation for the USBHub2x4.
The module contains the USB entity as well as the following.

Entities:

system

* app|[0-3]

* pointer[0-3]
» usb

¢ mux

« store[0-1]

* temperature
* timer[0-7]

3.2. Python API Reference 383

BrainStem Reference Manual, Release 2.11.1

Useful Constants:
« BASE_ADDRESS (6)
+ NUMBER_OF_STORES (3)
+ NUMBER_OF_INTERNAL_SLOTS (12)
« NUMBER_OF_RAM_SLOTS (1)
« NUMBER_OF_TIMERS (8)
+ NUMBER_OF_APPS (4)
* NUMBER_OF_POINTERS (4)
« NUMBER_OF_DOWNSTREAM_USB (4)
« NUMBER_OF_UPSTREAM_USB (2)
+ NUMBER_OF_PORTS (6)

Bit defines for port error UInt32 use brainstem.BIT(X) from aDefs.h to get bit value. i.e if
(error & brainstem.BIT(aUSBHUB2X4_USB_VBUS_ENABLED))

+ aUSBHUB2X4_USB_VBUS_ENABLED (0)

+ aUSBHUB2X4_USB2_DATA_ENABLED (1)

+ aUSBHUB2X4_USB_ERROR_FLAG (19)

+ aUSBHUB2X4_USB2_BOOST_ENABLED (20)
+ aUSBHUB2X4_DEVICE_ATTACHED (23)

+ aUSBHUB2X4_CONSTANT_CURRENT (24)

Bit defines for port error UInt32 use brainstem.BIT(X) from aDefs.h to get bit value. i.e if
(error & brainstem.BIT(aUSBHUB3P_ERROR_VBUS_OVERCURRENT))

+ aUSBHUB2X4_ERROR_VBUS_OVERCURRENT (0)
+ aUSBHUB2X4_ERROR_OVER_TEMPERATURE (3)
» aUSBHub2X4_ERROR_DISCHARGE (4)

class Hub (module, index)

connect (Serial_number, **kwargs)

Connect to a Module with a transport type and serial number.
Parameters
* transport (Spec.transport) - (Spec.transport): One of USB, TCPIP,
SERIAL or AETHER.
* serial_number (unsigned int) - The module serial_number to look
for.
Returns
An error result from the list of defined error codes in brainstem.result

Back to the top

384 Chapter 3. API Reference

BrainStem Reference Manual, Release 2.11.1

USBCSwitch

class brainstem.stem.USBCSwitch (address=6, enable auto networking=True,
model=21)

Concrete Module implementation for the USBC-Switch.
The module contains the USB entity as well as the following.
Entities:

* system

* app|[0-3]

* pointer[0-3]

» usb

* mux

* store[0-1]

* timer[0-7]

+ equalizer[0-1]
Useful Constants:

« BASE_ADDRESS (6)

« NUMBER_OF_STORES (3)

+ NUMBER_OF_INTERNAL_SLOTS (12)

« NUMBER_OF_RAM_SLOTS (1)

« NUMBER_OF_TIMERS (8)

+ NUMBER_OF_APPS (4)

« NUMBER_OF_POINTERS (4)

« NUMBER_OF_USB (1)

« NUMBER_OF_MUXS (1)

+ NUMBER_OF_EQUALIZERS (2)

Bit defines for port state UInt32 use brainstem.BIT(X) from aDefs.h to get bit value. i.e if
(state & brainstem.BIT (usbPortStateVBUS))

+ usbPortStateVBUS (0)
 usbPortStateHiSpeed (1)
* usbPortStateSBU (2)

+ usbPortStateSS1 (3)

» usbPortStateSS2 (4)
 usbPortStateCC1 5)

* usbPortStateCC2 (6)

* usbPortStateCCFlip (13)
 usbPortStateSSFlip (14)

3.2. Python API Reference 385

BrainStem Reference Manual, Release 2.11.1

usbPortStateSBUFlip (15)
usbPortStateErrorFlag (19)
usbPortStateUSB2Boost (20)
usbPortStateUSB3Boost (21)
usbPortStateConnectionEstablished (22)
usbPortStateCC1Inject (26)
usbPortStateCC2lInject (27)
usbPortStateCC1Detect (28)
usbPortStateCC2Detect (29)
usbPortStateCC1LogicState (30)
usbPortStateCC2LogicState 31)
usbPortStateOff (0)
usbPortStateSideA (1)
usbPortStateSideB (2)
usbPortStateSideUndefined (3)
TRANSMITTER_2P0_40mV (0)
TRANSMITTER_2P0_60mV (1)
TRANSMITTER_2P0_80mV (2)
TRANSMITTER_2P0_0mV (3)
MUX_1db_COM_0db_900mV (0
MUX_0db_COM_1db_900mV (1
MUX_1db_COM_1db_900mV (2
MUX_0db_COM_0db_900mV (3
MUX_0db_COM_0db_1100mV (4)
MUX_1db_COM_0db_1100mV (5)
MUX_0db_COM_1db_1100mV (6)
)
(8)

)
)
)
)

MUX_2db_COM_2db_1100mV (7
MUX_0db_COM_0db_1300mV (8
LEVEL 1_2P0 (0
LEVEL 2 2P0 (1
LEVEL 1 3P0 (0
LEVEL 2 3P0 (1
LEVEL_3 3P0 (2
LEVEL 4 3P0 (3
LEVEL 5 3P0 (4

(

)
)
)
)
)
)
)
LEVEL_6_3P0 (5)

386

Chapter 3. API Reference

BrainStem Reference Manual, Release 2.11.1

- LEVEL 7 3P0 (6)
- LEVEL 8 3P0 (7)
- LEVEL 9 3P0 (8)
- LEVEL_10_3P0 (9
« LEVEL_11_3P0 (1
- LEVEL 12 3P0

(©)
(10
(
« LEVEL_13_3P0 (
(
(

11

1
« LEVEL_14_3PO0 (1
« LEVEL_15_3PO0 (1
« LEVEL_16_3PO0 (15)

+ EQUALIZER_CHANNEL_BOTH (0)

« EQUALIZER_CHANNEL_MUX (1)

+ EQUALIZER_CHANNEL_COMMON (2)
* NO_DAUGHTERCARD (0)

+ PASSIVE_DAUGHTERCARD (1)

+ REDRIVER_DAUGHTERCARD (2)

+ UNKNOWN_DAUGHTERCARD (3)

connect (serial_number, **kwargs)

Connect to a Module with a transport type and serial number.
Parameters
* transport (Spec. transport) - (Spec.transport): One of USB, TCPIP,
SERIAL or AETHER.
* serial_number (unsigned int) - The module serial_number to look
for.
Returns
An error result from the list of defined error codes in brainstem.result

)
)
2)
3)
4)

Back to the top

MTMDAQ2

class brainstem.stem.MTMDAQ2 (address=10, enable_auto_networking=True, model=22)
Concrete Module implementation for MTM-DAQ-2 module

MTM-DAQ-2 modules contain contain the following entities:
* system
* app[0-3]
« digital[0-1]
* analog[0-19]
* i2c[0]
* pointer[0-3]
* store[0-1]

3.2. Python API Reference 387

BrainStem Reference Manual, Release 2.11.1

timer[0-7]

Useful Constants:

BASE_ADDRESS (10)
NUMBER_OF_STORES (2)
NUMBER_OF INTERNAL_SLOTS (12)
NUMBER_OF RAM_SLOTS (1)
NUMBER_OF DIGITALS (2)
NUMBER_OF_ANALOGS (20)
NUMBER_OF _12C (1)

NUMBER_OF POINTERS (4)
NUMBER_OF_TIMERS (8)
NUMBER_OF APPS (4)
ANALOG_RANGE_P0V064N0OV064 (0)
ANALOG_RANGE_P0V64NO0V64 (1)
ANALOG_RANGE_P0V128N0V128 (2)
ANALOG_RANGE_P1V28N1V28 (3)
ANALOG_RANGE_P1V28NOVO (4)
ANALOG_RANGE_P0V256N0V256 (5)
ANALOG_RANGE_P2V56N2V56 (6)
ANALOG_RANGE_P2V56NOVO (7)
ANALOG_RANGE_P0V512N0OV512 (8)
ANALOG_RANGE_P5V12N5V12 (9)
ANALOG_RANGE_P5V12NOVO (10)
ANALOG_RANGE_P1V024N1V024 (11)
ANALOG_RANGE_P10V24N10V24 (12)
ANALOG_RANGE_P10V24NOVO (13)
ANALOG_RANGE_P2V048NOVO (14)
ANALOG_RANGE_P4V096NOVO (15)
ANALOG_BULK_CAPTURE_MAX_HZ (500000)
ANALOG BULK_CAPTURE_MIN_HZ (1)

connect (Serial_number, **kwargs)
Connect to a Module with a transport type and serial number.

Parameters
* transport (Spec.transport) - (Spec.transport): One of USB, TCPIP,
SERIAL or AETHER.
* serial_number (unsigned int) - The module serial_number to look
for.
Returns
An error result from the list of defined error codes in brainstem.result

388

Chapter 3. API Reference

BrainStem Reference Manual, Release 2.11.1

Back to the top

MTMEtherStem

class brainstem.stem.MTMEtherStem (address=4, enable_auto_networking=True,
model=15)

Concrete Module implementation for MTM EtherStem modules

USBStem modules contain the following entities:

system
analog[0-3]
app(0-3]
clock
digital[0-14]
i2c[0-1]
pointer[0-3]
servo[0-7]
store[0-2]
timer[0-7]

Useful Constants:

BASE_ADDRESS (4)
NUMBER_OF STORES (3)
NUMBER_OF INTERNAL SLOTS (12)
NUMBER_OF RAM_SLOTS (1)
NUMBER_OF SD_SLOTS (255)
NUMBER_OF ANALOGS (4)
DAC_ANALOG_INDEX (3)
FIXED_DAC_ANALOG (False)
NUMBER_OF DIGITALS (15)
NUMBER_OF [2C (2)

NUMBER_OF POINTERS (4)
NUMBER_OF TIMERS (8)
NUMBER_OF APPS (4)

NUMBER_OF SERVOS (8)
NUMBER_OF SERVO_OUTPUTS (4)
NUMBER_OF SERVO_INPUTS (4)

ANALOG_BULK_CAPTURE_MAX_HZ (200000)
ANALOG_BULK_CAPTURE_MIN_HZ (7000)

3.2. Python API Reference

389

BrainStem Reference Manual, Release 2.11.1

connect (serial_number, **kwargs)

Connect to a Module with a transport type and serial number.

Back to the top

MTMIOSerial

Parameters

* transport (Spec. transport) - (Spec.transport): One of USB, TCPIP,

SERIAL or AETHER.

* serial_number (unsigned int) - The module serial_number to look

for.
Returns

An error result from the list of defined error codes in brainstem.result

class brainstem.stem.MTMIOSerial (address=8, enable _auto networking=True,

model=13)
Concrete Module implementation for MTM-1O-Serial module

MTM-IO-SERIAL modules contain contain the following entities:

system
app(0-3]
digital[0-8]
i2c[0]
pointer[0-3]
servo[0-7]
signal[0-4]
store[0-1]
temperature
timer[0-7]
uart[0-3]
rail[0-2]

Useful Constants:

BASE_ADDRESS (8)
NUMBER_OF_STORES (2)
NUMBER_OF_INTERNAL_SLOTS (12)
NUMBER_OF_RAM_SLOTS (1)
NUMBER_OF_DIGITALS (8)
NUMBER_OF_I2C (1)
NUMBER_OF_POINTERS (4)
NUMBER_OF_TIMERS (8)
NUMBER_OF_APPS (4)
NUMBER_OF_UART (1)

390

Chapter 3. API Reference

BrainStem Reference Manual, Release 2.11.1

class

NUMBER_OF_RAILS (3)

NUMBER_OF SERVOS (8)

NUMBER_OF SERVO_OUTPUTS (4)
NUMBER_OF_ SERVO_INPUTS (4)
NUMBER_OF_SIGNALS (5)

NUMBER_OF USB (1)

NUMBER_OF USB_PORTS (4)
NUMBER_OF_PORTS (5)
aMTMIOSERIAL_USB_VBUS_ENABLED (0)
aMTMIOSERIAL_USB2 DATA ENABLED (1)
aMTMIOSERIAL_USB_ERROR_FLAG (19)
aMTMIOSERIAL_USB2_BOOST ENABLED (20)
aMTMIOSERIAL_ERROR_VBUS_OVERCURRENT (0)

Hub (module, index)

connect (Serial_number, **kwargs)

Connect to a Module with a transport type and serial number.

Back to the top

MTMLOAD1

class brainstem.stem.MTMLOADI1 (address=14, enable_auto_networking=True,

Parameters

* transport (Spec.transport) - (Spec.transport): One of USB, TCPIP,

SERIAL or AETHER.

* serial_number (unsigned int) - The module serial_number to look

for.
Returns

An error result from the list of defined error codes in brainstem.result

model=23)

Concrete Module implementation for MTM-LOAD-1 module

MTM-LOAD-1 modules contain contain the following entities:

system
app[0-3]
digital[0-3]
i2c[0]
pointer[0-3]
store[0-1]
timer[0-7]
rail[0]

temperature

3.2. Python API

Reference

391

BrainStem Reference Manual, Release 2.11.1

Useful Constants:
« BASE_ADDRESS (14)
« NUMBER_OF_STORES (2)
+ NUMBER_OF_INTERNAL_SLOTS (12)
« NUMBER_OF_RAM_SLOTS (1)
« NUMBER_OF_DIGITALS (2)
« NUMBER_OF_I2C (1)
* NUMBER_OF_POINTERS (4)
« NUMBER_OF_TIMERS (8)
« NUMBER_OF_APPS (4)
* NUMBER_OF_RAILS (2)
« NUMBER_OF_TEMPERATURES (1)

connect (Serial_number, **kwargs)

Connect to a Module with a transport type and serial number.
Parameters
* transport (Spec.transport) - (Spec.transport): One of USB, TCPIP,
SERIAL or AETHER.
* serial_number (unsigned int) - The module serial_number to look
for.
Returns
An error result from the list of defined error codes in brainstem.result

Back to the top

MTMPM1

class brainstem.stem.MTMPM1 (address=6, enable auto networking=True, model=14)
Concrete Module implementation for MTM-PM-1 module

MTM-PM-1 modules contain contain the following entities:
* gsystem
* app[0-3]
« digital[0-1]
* i2¢[0]
* pointer[0-3]
* store[0-1]
* timer[0-7]
* rail[0-1]
* temperature
Useful Constants:
+ BASE_ADDRESS (6)
+ NUMBER_OF_STORES (2)

392 Chapter 3. API Reference

BrainStem Reference Manual, Release 2.11.1

- NUMBER_OF INTERNAL_SLOTS (12)
- NUMBER_OF RAM_SLOTS (1)

- NUMBER_OF DIGITALS (2)

- NUMBER_OF_2C (1)

- NUMBER_OF POINTERS (4)

- NUMBER_OF TIMERS (8)

- NUMBER_OF APPS (4)

- NUMBER_OF RAILS (2)

« NUMBER_OF TEMPERATURES (1)

connect (Serial_number, **kwargs)

Connect to a Module with a transport type and serial number.
Parameters
* transport (Spec.transport) - (Spec.transport): One of USB, TCPIP,
SERIAL or AETHER.
* serial_number (unsigned int) - The module serial_number to look
for.
Returns
An error result from the list of defined error codes in brainstem.result

Back to the top

MTMRelay

class brainstem.stem.MTMRelay (address=12, enable_auto_networking=True,
model=18)

Concrete Module implementation for MTM-RELAY module
MTM-RELAY modules contain contain the following entities:
* system
* app|[0-3]
« digital[0-3]
* i2c[0]
* pointer[0-3]
* store[0-1]
* timer[0-7]
* relay[0-3]
» temperature
Useful Constants:
- BASE_ADDRESS (12)
« NUMBER_OF_STORES (2)
+ NUMBER_OF_INTERNAL_SLOTS (12)
+ NUMBER_OF_RAM_SLOTS (1)

3.2. Python API Reference 393

BrainStem Reference Manual, Release 2.11.1

« NUMBER_OF _DIGITALS (4)
- NUMBER_OF [2C (1)

- NUMBER_OF POINTERS (4)
- NUMBER_OF_TIMERS (8)

- NUMBER_OF APPS (4)

- NUMBER_OF RELAYS (4)

connect (Serial_number, **kwargs)

Connect to a Module with a transport type and serial number.

Parameters

* transport (Spec.transport) - (Spec.transport): One of USB, TCPIP,

SERIAL or AETHER.

* serial_number (unsigned int) - The module serial_number to look

for.
Returns

An error result from the list of defined error codes in brainstem.result

Back to the top

MTMUSBStem

class brainstem.stem.MTMUSBStem (address=4, enable_auto_networking=True,

model=16)
Concrete Module implementation for MTM USBStem modules

MTMUSBStem modules contain the following entities:

* system
+ analog[0-3]
* app[0-3]
+ clock
- digital[0-14]
* i2¢[0-1]
* pointer[0-3]
* servo[0-7]
+ signal[0-4]
« store[0-2]
* timer[0-7]
Useful Constants:
- BASE_ADDRESS (4)
+ NUMBER_OF_STORES (3)
* NUMBER_OF_INTERNAL_SLOTS (12)
- NUMBER_OF RAM_SLOTS (1)
+ NUMBER_OF_SD_SLOTS (255)

394

Chapter 3. API Reference

BrainStem Reference Manual, Release 2.11.1

NUMBER_OF_ANALOGS (4)

DAC_ANALOG _INDEX (3)
FIXED_DAC_ANALOG (True)

NUMBER_OF DIGITALS (15)
NUMBER_OF _12C (2)

NUMBER_OF POINTERS (4)
NUMBER_OF_TIMERS (8)
NUMBER_OF_APPS (4)

NUMBER_OF SERVOS (8)

NUMBER_OF SERVO_OUTPUTS (4)
NUMBER_OF SERVO_INPUTS (4)
NUMBER_OF_SIGNALS (5)

ANALOG BULK_CAPTURE_MAX_HZ (200000)
ANALOG BULK_CAPTURE_MIN_HZ (7000)

connect (serial_number, **kwargs)

Connect to a Module with a transport type and serial number.

Back to the top

MTMDAQ1

class brainstem.stem.MTMDAQ1 (address=10, enable_auto_networking=True, model=20)

Parameters

* transport (Spec.transport) - (Spec.transport): One of USB, TCPIP,

SERIAL or AETHER.

* serial_number (unsigned int) - The module serial_number to look

for.
Returns

An error result from the list of defined error codes in brainstem.result

Concrete Module implementation for MTM-DAQ-1 module

MTM-DAQ-1 modules contain contain the following entities:

system
app[0-3]
digital[0-1]
analog[0-19]
i2c[0]
pointer[0-3]
store[0-1]
timer[0-7]

Useful Constants:

BASE_ADDRESS (10)

3.2,

Python API

Reference

395

BrainStem Reference Manual, Release 2.11.1

NUMBER_OF_STORES (2)
NUMBER_OF INTERNAL SLOTS (12)
NUMBER_OF RAM_SLOTS (1)
NUMBER_OF DIGITALS (2)
NUMBER_OF ANALOGS (20)
NUMBER_OF _12C (1)

NUMBER_OF POINTERS (4)
NUMBER_OF_TIMERS (8)
NUMBER_OF APPS (4)
ANALOG_RANGE_P0V064N0OV064 (0)
ANALOG_RANGE_P0V64NO0V64 (1)
ANALOG_RANGE_POV128N0OV128 (2)
ANALOG_RANGE_P1V28N1V28 (3)
ANALOG_RANGE_P1V28NOVO (4)
ANALOG_RANGE_P0V256N0V256 (5)
ANALOG_RANGE_P2V56N2V56 (6)
ANALOG_RANGE_P2V56NOVO (7)
ANALOG_RANGE_P0V512N0V512 (8)
ANALOG_RANGE_P5V12N5V12 (9)
ANALOG_RANGE_P5V12NOVO (10)
ANALOG_RANGE_P1V024N1V024 (11)
ANALOG_RANGE_P10V24N10V24 (12)
ANALOG_RANGE_P10V24NOVO (13)
ANALOG_RANGE_P2V048NOVO (14)
ANALOG_RANGE_P4V096NOVO (15)

connect (serial_number, **kwargs)
Connect to a Module with a transport type and serial number.

Back to the top

Parameters
* transport (Spec.transport) - (Spec.transport): One of USB, TCPIP,
SERIAL or AETHER.
* serial_number (unsigned int) - The module serial_number to look
for.
Returns
An error result from the list of defined error codes in brainstem.result

396

Chapter 3. API Reference

BrainStem Reference Manual, Release 2.11.1

EtherStem

class brainstem.stem.EtherStem (address=2, enable_auto networking=True,

Concrete Module implementation for 40Pin EtherStem modules

model=5)

EtherStem modules contain the following entities:

system
analog[0-3]
appl[0-3]
clock
digital[0-14]
i2c[0-1]
pointer[0-3]
servo[0-7]
store[0-2]
timer[0-7]

Useful Constants:

BASE_ADDRESS (2)
NUMBER_OF_STORES (3)

NUMBER_OF INTERNAL SLOTS (12)
NUMBER_OF RAM_SLOTS (1)
NUMBER_OF SD_SLOTS (255)
NUMBER_OF ANALOGS (4)

DAC_ANALOG _INDEX (3)
FIXED_DAC_ANALOG (False)
NUMBER_OF_DIGITALS (15)
NUMBER_OF _12C (2)

NUMBER_OF POINTERS (4)
NUMBER_OF_TIMERS (8)
NUMBER_OF_APPS (4)

NUMBER_OF SERVOS (8)

NUMBER_OF SERVO_OUTPUTS (4)
NUMBER_OF SERVO_INPUTS (4)
ANALOG BULK_CAPTURE_MAX_HZ (200000)
ANALOG BULK_CAPTURE_MIN_HZ (7000)

3.2. Python API Reference

397

BrainStem Reference Manual, Release 2.11.1

connect (serial_number, **kwargs)

Connect to a Module with a transport type and serial number.
Parameters
* transport (Spec. transport) - (Spec.transport): One of USB, TCPIP,
SERIAL or AETHER.
* serial_number (unsigned int) - The module serial_number to look
for.
Returns
An error result from the list of defined error codes in brainstem.result

Back to the top

USBStem

class brainstem.stem.USBStem (address=2, enable _auto networking=True, model=4)
Concrete Module implementation for 40Pin USBStem modules

USBStem modules contain contain the following entities:
* system
+ analog[0-3]
* app[0-3]
» clock
« digital[0-14]
* i2c[0-1]
* pointer[0-3]
* servo[0-7]
* store[0-2]
* timer[0-7]

Useful Constants:
- BASE_ADDRESS (2)
« NUMBER_OF_STORES (3)
« NUMBER_OF_INTERNAL_SLOTS (12)
+ NUMBER_OF_RAM_SLOTS (1)
« NUMBER_OF_SD_SLOTS (255)
« NUMBER_OF_ANALOGS (4)
- DAC_ANALOG_INDEX (3)
« FIXED_DAC_ANALOG (False)
« NUMBER_OF_DIGITALS (15)
* NUMBER_OF_I2C (2)
+ NUMBER_OF_POINTERS (4)
« NUMBER_OF_TIMERS (8)

398 Chapter 3. API Reference

BrainStem Reference Manual, Release 2.11.1

- NUMBER_OF_APPS (4)

- NUMBER_OF SERVOS (8)

- NUMBER_OF SERVO_OUTPUTS (4)

- NUMBER_OF SERVO_INPUTS (4)

ANALOG BULK_CAPTURE_MAX_HZ (200000)
ANALOG BULK_CAPTURE_MIN_HZ (7000)

connect (serial_number, **kwargs)

Connect to a Module with a transport type and serial number.
Parameters
* transport (Spec.transport) - (Spec.transport): One of USB, TCPIP,
SERIAL or AETHER.
* serial_number (unsigned int) - The module serial_number to look
for.
Returns
An error result from the list of defined error codes in brainstem.result

Back to the top

3.2.3 Package Structure

The BrainStem package consists of a number of modules, which together form the BrainStem python API.

brainstem.module

A module that provides base classes for BrainStem Modules and Entities.

The Module and Entity classes are designed to be extended for specific types of BrainStem Modules and
Entities. For more information about Brainstem Modules and Entities, please see the Terminology’® section of
the Acroname BrainStem Reference®°

brainstem.stem

Provides specific module instances, and entity functionality.

The Module and Entity classes contained in this module provide the core API functionality for all of the Brain-
stem modules. For more information about possible entities please see the Entity®' section of the Acroname
BrainStem Reference®?

79 https://acroname.com/reference/brainstem/terms.htmi
80 https://acroname.com/reference

81 https://acroname.com/reference/api/entities

82 https://acroname.com/reference

3.2. Python API Reference 399

https://acroname.com/reference/brainstem/terms.html
https://acroname.com/reference
https://acroname.com/reference/api/entities
https://acroname.com/reference
https://acroname.com/reference

BrainStem Reference Manual, Release 2.11.1

brainstem.link

A module that provides a Spec class for specifying a connection to a BrainStem module.

A Spec instance fully describes a connection to a brainstem module. In the case of USB based stems this is
simply the serial number of the module. For TCPIP based stems this is an IP address and TCP port.

For more information about links and the Brainstem network see the Acroname BrainStem Reference®?

brainstem.discover

A module that provides methods for discovering brainstem modules over USB and TPCIP.

The discovery module provides an interface for locating BrainStem modules accross multiple transports. It
provides a way to find all modules for a give transport as well as specific modules by serial number, or first
found. The result of a call to one of the discovery functions is either a list of brainstem.link.Spec objects, or a
single brainstem.link.Spec.

The Discovery module allows users to find specific brainstem devices via their serial number, or a list of all
devices connected to the host via usb or on the same subnet via TCP/IP. In all cases a Spec object is returned
with connection details for the device. In addition do connection details, the BrainStem model is returned. This
model is one of a list of BrainStem device model numbers which are accessible via the defs module.

A typical interactive python session finding all connected USB modules might look like the following.

>> import brainstem >> module_list = brainstem.discover.findAlIModules(brainstem.link.Spec.USB)
>> print [str(s) for s in module_list] [‘Model: 4 LinkType: USB(serial: 0xCB4A3B25, module: 0)’,
‘Model: 13 LinkType: USB(serial: 0x40F5849A, module: 0)’]

For an overview of links, discovery and the Brainstem network see the Acroname BrainStem Reference®*
brainstem.defs

A module that provides defines and constants useful for working with the python library.

brainstem.result

A module that provides a result class for returning results of UEI commands.

Results consist of an error attribute and a value attribute. If the error attribute is set to NO_ERROR, then the
result value is the response to the UEI command that was sent.

For more information about return values for commands and UEI’s see the Acroname BrainStem Reference®®

83 hitps://acroname.com/reference
84 https://acroname.com/reference
85 https://acroname.com/reference

400 Chapter 3. API Reference

https://acroname.com/reference
https://acroname.com/reference
https://acroname.com/reference

BrainStem Reference Manual, Release 2.11.1

brainstem.version

Provides version access utilities.

3.2.4 Analog

class brainstem.entity.Analog (module, index)

AnalogClass: Interface to analog entities on BrainStem modules. Analog entities may be con-
figured as a input or output depending on hardware capabilities. Some modules are capable of
providing actual voltage readings, while other simply return the raw analog-to-digital converter
(ADC) output value. The resolution of the voltage or number of useful bits is also hardware
dependent.

getBulkCaptureNumberOfSamples ()

Get the current number of samples setting for this analog when bulk capturing. number
of samples.
Returns
Result object containing the requested value when the results error is set to
NO_ERROR(0)
Return type
Result

getBulkCaptureSampleRate ()

Get the current sample rate setting for this analog when bulk capturing. upon success
filled with current sample rate in samples per second (Hertz).
Returns
Result object containing the requested value when the results error is set to
NO_ERROR(0)
Return type
Result

getBulkCaptureState ()

Get the current bulk capture state for this analog. the state of bulk capture. - Idle: bulk-
Captureldle = 0 - Pending: bulkCapturePending = 1 - Finished: bulkCaptureFinished = 2
- Error: bulkCaptureError = 3
Returns
Result object containing the requested value when the results error is set to
NO_ERROR(0)
Return type
Result

getConfiguration ()

Get the analog configuration. - Current configuration of the analog entity.
Returns
Result object containing the requested value when the results error is set to
NO_ERROR(0)
Return type
Result

getEnable ()

Get the analog output enable status. 0 if disabled 1 if enabled.
Returns
Result object containing the requested value when the results error is set to
NO_ERROR(0)

3.2. Python API Reference 401

BrainStem Reference Manual, Release 2.11.1

Return type
Result

getRange ()

Get the analog input range. 8 bit value corresponding to a discrete range option
Returns
Result object containing the requested value when the results error is set to
NO_ERROR(0)
Return type
Result

getValue ()

Get the raw ADC output value in bits. 16 bit analog reading with 0 corresponding to the
negative analog voltage reference and OxFFFF corresponding to the positive analog volt-
age reference. Note: Not all modules are provide 16 useful bits; this value’s least signifi-
cant bits are zero-padded to 16 bits. Refer to the module’s datasheet to determine analog
bit depth and reference voltage.
Returns
Result object containing the requested value when the results error is set to
NO_ERROR(0)
Return type
Result

getVoltage ()

Get the scaled micro volt value with reference to ground. 32 bit signed integer (in micro-
volts) based on the board’s ground and reference voltages. Note: Not all modules provide
32 bits of accuracy; Refer to the module’s datasheet to determine the analog bit depth and
reference voltage.
Returns
Result object containing the requested value when the results error is set to
NO_ERROR(0)
Return type
Result

initiateBulkCapture ()

Initiate a BulkCapture on this analog. Captured measurements are stored in the module’s
RAM store (RAM_STORE) slot 0. Data is stored in a contiguous byte array with each
sample stored in two consecutive bytes, LSB first.
Returns
An error result from the list of defined error codes in brainstem.result
Return type
unsigned byte

setBulkCaptureNumberOfSamples (value)

Set the number of samples to capture for this analog when bulk capturing.

Parameters
value (const unsigned int)- number of samples. Minimum # of Sam-
ples: 0 Maximum # of Samples: (BRAINSTEM_RAM_SLOT_SIZE / 2) =
(3FFF /2) = 1FFF = 8191

Returns
An error result from the list of defined error codes in brainstem.result

Return type
unsigned byte

setBulkCaptureSampleRate (value)
Set the sample rate for this analog when bulk capturing.

402 Chapter 3. API Reference

BrainStem Reference Manual, Release 2.11.1

Parameters
value (const unsigned int)-samplerateinsamples per second (Hertz).
Minimum rate: 7,000 Hz Maximum rate: 200,000 Hz
Returns
An error result from the list of defined error codes in brainstem.result
Return type
unsigned byte

setConfiguration (configuration)
Set the analog configuration. aErrConfiguration - Entity does not support this configura-
tion.
Parameters
configuration (const unsigned char)-
* bitAnalogConfigurationOutput configures the analog entity as an output.
Returns
An error result from the list of defined error codes in brainstem.result
Return type
unsigned byte

setEnable (enable)

Set the analog output enable state.
Parameters
enable (const unsigned char)-set1toenable or 0 to disable.
Returns
An error result from the list of defined error codes in brainstem.result
Return type
unsigned byte

setRange (range)
Set the analog input range.

Parameters
range (const unsigned char) - 8 bit value corresponding to a discrete
range option

Returns
An error result from the list of defined error codes in brainstem.result

Return type
unsigned byte

setValue (value)

Set the value of an analog output (DAC) in bits.

Parameters
value (const unsigned short) - 16 bit analog set point with O corre-
sponding to the negative analog voltage reference and 0xFFFF corresponding
to the positive analog voltage reference. Note: Not all modules are provide
16 useful bits; the least significant bits are discarded. E.g. for a 10 bit DAC,
0xFFCO to 0x0040 is the useful range. Refer to the module’s datasheet to de-
termine analog bit depth and reference voltage.

Returns
An error result from the list of defined error codes in brainstem.result

Return type
unsigned byte

setVoltage (microvolts)

Set the voltage level of an analog output (DAC) in microvolts.
Parameters
microvolts (const int) - 32 bit signed integer (in microvolts) based on

3.2,

Python API Reference 403

BrainStem Reference Manual, Release 2.11.1

the board’s ground and reference voltages. Note: Voltage range is dependent
on the specific DAC channel range.
Returns
An error result from the list of defined error codes in brainstem.result
Return type
unsigned byte

3.2.5 App

class brainstem.entity.App (module, index)

AppClass: Used to send a cmdAPP packet to the BrainStem network. These commands are
used for either host-to-stem or stem-to-stem interactions. BrainStem modules can implement
a reflex origin to complete an action when a cmdAPP packet is addressed to the module.

execute (appParam)

Execute the app reflex on the module. Don’t wait for a return value from the execute call;
this call returns immediately upon execution of the module’s reflex. aErrNone success.
aErrTimeout The request timed out waiting to start execution. aErrConnection No active
link connection. aErrNotFound the app reflex was not found or not enabled on the module.
Parameters
appParam (const unsigned int) - The app parameter handed to the
reflex.
Returns
An error result from the list of defined error codes in brainstem.result
Return type
unsigned byte

executeAndReturn (appParam, msTimeout)

Execute the app reflex on the module. Wait for a return from the reflex execution for msTi-
moue milliseconds. This method will block for up to msTimeout. The return value filled
in from the result of executing the reflex routine. aErrNone success. aErrTimeout The
request timed out waiting for a response. aErrConnection No active link connection. aEr-
rNotFound the app reflex was not found or not enabled on the module.
Parameters
* appParam (const unsigned int)- The app parameter handed to the
reflex.
* msTimeout (const unsigned int)- The amount of time to wait for the
return value from the reflex routine. The default value is 1000 milliseconds if
not specified.
Returns
Result object containing the requested value when the results error is set to
NO_ERROR(0)
Return type
Result

404 Chapter 3. API Reference

BrainStem Reference Manual, Release 2.11.1

3.2.6 Clock

class brainstem.entity.Clock (module, index)
ClockClass: Provides an interface to a real-time clock entity on a BrainStem module. The
clock entity may be used to get and set the real time of the system. The clock entity has a one
second resolution. @note Clock time must be reset if power to the BrainStem module is lost.

getDay ()
Get the two digit day of month value (1-28, 29, 30 or 31 depending on the month). The
two digit day portion of the real-time clock value.
Returns
Result object containing the requested value when the results error is set to
NO_ERROR(0)
Return type
Result

getHour ()
Get the two digit hour value (0-23). The two digit hour portion of the real-time clock value.
Returns
Result object containing the requested value when the results error is set to
NO_ERROR(0)
Return type
Result

getMinute ()
Get the two digit minute value (0-59). The two digit minute portion of the real-time clock
value.
Returns
Result object containing the requested value when the results error is set to
NO_ERROR(0)
Return type
Result

getMonth ()
Get the two digit month value (1-12). The two digit month portion of the real-time clock
value.
Returns
Result object containing the requested value when the results error is set to
NO_ERROR(0)
Return type
Result

getSecond ()
Get the two digit second value (0-59). The two digit second portion of the real-time clock
value.
Returns
Result object containing the requested value when the results error is set to
NO_ERROR(0)
Return type
Result

getYear ()
Get the four digit year value (0-4095). Get the year portion of the real-time clock value.
Returns
Result object containing the requested value when the results error is set to
NO_ERROR(0)

3.2. Python API Reference

405

BrainStem Reference Manual, Release 2.11.1

Return type
Result

setDay (day)

Set the two digit day of month value (1-28, 29, 30 or 31 depending on the month).
Parameters
day (const unsigned char) - The two digit day portion of the real-time
clock value.
Returns
An error result from the list of defined error codes in brainstem.result
Return type
unsigned byte

setHour (hour)

Set the two digit hour value (0-23).

Parameters
hour (const unsigned char) - The two digit hour portion of the real-time
clock value.

Returns
An error result from the list of defined error codes in brainstem.result

Return type
unsigned byte

setMinute (min)

Set the two digit minute value (0-59).

Parameters
min (const unsigned char) - The two digit minute portion of the real-time
clock value.

Returns
An error result from the list of defined error codes in brainstem.result

Return type
unsigned byte

setMonth (month)

Set the two digit month value (1-12).

Parameters
month (const unsigned char) - The two digit month portion of the real-
time clock value.

Returns
An error result from the list of defined error codes in brainstem.result

Return type
unsigned byte

setSecond (secC)

Set the two digit second value (0-59).

Parameters
sec (const unsigned char) - The two digit second portion of the real-time
clock value.

Returns
An error result from the list of defined error codes in brainstem.result

Return type
unsigned byte

setYear (year)
Set the four digit year value (0-4095).

406 Chapter 3. API Reference

BrainStem Reference Manual, Release 2.11.1

Parameters
year (const unsigned short) - Setthe year portion of the real-time clock
value.
Returns
An error result from the list of defined error codes in brainstem.result
Return type
unsigned byte

3.2.7 Definitions

A module that provides defines and constants useful for working with the python library.

brainstem.defs.model_info (model)
Get Model information.

Parameters
model (int) - One of the model numbers, i.e from stem.system.getModel().

Returns
String containing model information.

brainstem.defs.model_name (model)
Get Model Name.

Parameters
model (int) - One of the model numbers, i.e from stem.system.getModel().

Returns
A string containing model name.

3.2.8 Digital

class brainstem.entity.Digital (module, index)

DigitalClass: Interface to digital entities on BrainStem modules. Digital entities have the follow-
ing 5 possibilities: Digital Input, Digital Output, RCServo Input, RCServo Output, and HighZ.
Other capabilities may be available and not all pins support all configurations. Please see the
product datasheet.

getConfiguration ()

Get the digital configuration. - Current configuration of the digital entity.
Returns
Result object containing the requested value when the results error is set to
NO_ERROR(0)
Return type
Result

getState ()

Get the state. The current state of the digital entity. 0 is logic low, 1 is logic high. Note: If
in high Z state an error will be returned.
Returns
Result object containing the requested value when the results error is set to
NO_ERROR(0)
Return type
Result

3.2. Python API Reference 407

BrainStem Reference Manual, Release 2.11.1

getStateAll ()

Gets the logical state of all available digitals in a bit mapped representation. Number of
digitals varies across BrainStem modules. Refer to the datasheet for the capabilities of
your module. The state of all digitals where bit 0 = digital 0, bit 1 = digital 1 etc. 0 is logic
low, 1 is logic high.
Returns
Result object containing the requested value when the results error is set to
NO_ERROR(0)
Return type
Result

setConfiguration (configuration)

Set the digital configuration to one of the available 5 states. Note: Some configurations
are only supported on specific pins. aErrConfiguration Entity does not support this con-
figuration.
Parameters
configuration (const unsigned char) - The configuration to be ap-
plied - Digital Input: digitalConfigurationinput = 0 - Digital Output: digitalCon-
figurationOutput = 1 - RCServo Input: digitalConfigurationRCServolnput = 2 -
RCServo Output: digitalConfigurationRCServoOutput = 3 - High Z State: dig-
italConfigurationHiZ = 4 - Digital Input: digitalConfigurationinputPullUp = 0 -
Digital Input: digitalConfigurationlinputNoPull = 4 - Digital Input: digitalConfigu-
rationlnputPullDown = 5
Returns
An error result from the list of defined error codes in brainstem.result
Return type
unsigned byte

setState (state)

Set the logical state.

Parameters
state (const unsigned char) - The state to be set. 0 is logic low, 1 is
logic high.

Returns
An error result from the list of defined error codes in brainstem.result

Return type
unsigned byte

setStateAll (state)

Sets the logical state of all available digitals based on the bit mapping. Number of digi-
tals varies across BrainStem modules. Refer to the datasheet for the capabilities of your
module.
Parameters
state (const unsigned int) - The state to be set for all digitals in a bit
mapped representation. 0 is logic low, 1 is logic high. Where bit 0 = digital 0,
bit 1 = digital 1 etc.
Returns
An error result from the list of defined error codes in brainstem.result
Return type
unsigned byte

408 Chapter 3. API Reference

BrainStem Reference Manual, Release 2.11.1

3.2.9 Discovery

A module that provides methods for discovering brainstem modules over USB and TPCIP.

The discovery module provides an interface for locating BrainStem modules accross multiple transports. It
provides a way to find all modules for a give transport as well as specific modules by serial number, or first
found. The result of a call to one of the discovery functions is either a list of brainstem.link.Spec objects, or a
single brainstem.link.Spec.

The Discovery module allows users to find specific brainstem devices via their serial number, or a list of all
devices connected to the host via usb or on the same subnet via TCP/IP. In all cases a Spec object is returned
with connection details for the device. In addition do connection details, the BrainStem model is returned. This
model is one of a list of BrainStem device model numbers which are accessible via the defs module.

A typical interactive python session finding all connected USB modules might look like the following.

>> import brainstem >> module_list = brainstem.discover.findAlIModules(brainstem.link.Spec.USB)
>> print [str(s) for s in module_list] [‘Model: 4 LinkType: USB(serial: 0xCB4A3B25, module: 0)’,
‘Model: 13 LinkType: USB(serial: 0x40F5849A, module: 0)’]

For an overview of links, discovery and the Brainstem network see the Acroname BrainStem Reference®®

class brainstem.discover.DeviceNode

Python representation of DeviceNode_t (C structure)
 hub_serial_number (uint32_t): Serial number of the Acroname hub where the device was found.
 hub_port (uint8_t): Port of the Acroname hub where the device was found.
* id_vendor (uint16_t): Manufactures Vendor ID of the downstream device.
* id_product (uint16_t): Manufactures Product ID of the downstream device.
*speed (enumeration): The devices downstream device speed.

— Unknown (0)

Low Speed (1)

Full Speed (2)

High Speed (3)

Super Speed (4)

— Super Speed Plus (5)

 product_name (string): USB string descriptor.
« manufacture (string): USB string descriptor.
* serial_number (string): USB string descriptor.

brainstem.discover.findAl1lModules (fransports, aether_config=<brainstem.link.aEtherConfig
object>, buffer_length=128)

Return a list of Specs for all modules found on the transports given.
Transports can be presented as a list, and the results would be a list of all modules found for those

transports. TCPIP modules take a little longer to find due to the Multicast and gather necessary for
finding modules on the local network segment.

Parameters
transports (int or 1list (int)) - Alistof transports or a single transport.

86 hitps://acroname.com/reference

3.2. Python API Reference 409

https://acroname.com/reference

BrainStem Reference Manual, Release 2.11.1

Returns
A list of the Spec objects for all modules found.

Return type
list(Spec)

brainstem.discover.findFirstModule (lransports, aether_config=<brainstem.link.aEtherConfig
object>)

Return the Spec for the first module found on the given transport.

Parameters
* transports (int or list (int)) - Alistof transports or a single transport.
* aether_config (aEtherConfig) - Allows configuration of aEther other than the
default.

Returns
The connection spec of the first module found on the given transport.

Return type
Spec

brainstem.discover.findModule (transports, serial_number,
aether_config=<brainstem.link.aEtherConfig object>)

Return the Spec for the module with the given serial number.
Transports can be presented as a list. TCPIP modules take a little longer to find due to the Multicast and
gather necessary for finding modules on the local network segment.
Parameters
* transports (int or 1list (int)) - Alistof transports or a single transport.

* serial_number (unsigned int)- The module serial number to look for.

Returns
The connection spec for the module whose serial number is given in the args.
brainstem.discover.getDownstreamDevices (list_length=128)
Gets downstream device USB information for all Acroname hubs.

Parameters
list_length - The amount of memory to provide for the lower level C call.

Returns
Result object containing NO_ERROR and a tuple of DeviceNode’s containing the detected

downstream devices:: - aErrParam: Passed in values are not valid (NULL, size, etc). -
aErrMemory: No more room in the list. - aErrNotFound: No Acroname devices were

found.

Return type
Result

brainstem.discover.getIPv4dInterfaces (list length=30)
Populates a list with all of the available IPv4 Interfaces.

Parameters
list_length (unsigned int) - Size of list to allocate for.

Returns
A tuple of IPv4 interfaces.

410 Chapter 3. API Reference

BrainStem Reference Manual, Release 2.11.1

Return type
tuple(unsigned int)

3.2.10 Entity

class brainstem.Entity_Entity.Entity (module, cmd, index)
Base class for BrainStem Entity.

Provides the default implementation for a functional entity within the BrainStem. This can
include 10 like GPIOs, Analogs etc. For a more detailed description of Entities see the Termi-
nology®” section of the brainstem reference for more information.

call_UEI (option)

Call a set UEI on this entity.
Parameters
option (byte) - The command option.
Returns
An error result from the list of defined error codes in brainstem.result

property command
Return the entity command.
Type
int
drain_UEI (option)
Drain UEI packets matching option.
Parameters
option (byte) - The command option.
Returns
An error result from the list of defined error codes in brainstem.result

getStreamStatus (buffer_length=1024)

Gets all available stream values associated with the cmd and index of the called API.
Parameters
buffer_ length (unsigned int) - Size of the buffer to allocate
Returns
An error result from the list of defined error codes in brainstem.result

get_UEI16 (option)

Get a UEI short value.

Parameters
option (byte) - The command option.

Returns
Result object containing the requested value when the results error is set to
NO_ERROR(0)

Return type
Result

get_UEIlé6_with_subindex (option, subindex)

Call a get UEI short value with a subindex.
Parameters
* option (byte) - The command option.
* subIndex (byte) - The subindex of the entity.

3.2. Python API Reference 411

https://acroname.com/reference/brainstem/terms.html
https://acroname.com/reference/brainstem/terms.html

BrainStem Reference Manual, Release 2.11.1

Returns
Result object containing the requested value when the results error is set to
NO_ERROR(0)

Return type
Result

get_UEI32 (option)
Get a UEl int value.

Parameters
option (byte) - The command option.

Returns
Result object containing the requested value when the results error is set to
NO_ERROR(0)

Return type
Result

get_UEI32_with_subindex (option, sublndex)

Call a get UEl int value with a subindex.

Parameters
* option (byte) - The command option.
* subIndex (byte) - The sublndex of the entity.

Returns
Result object containing the requested value when the results error is set to
NO_ERROR(0)

Return type
Result

get_UEIS8 (option)
Get a UEI byte value.
Parameters
option (byte) - The command option.
Returns
Result object containing the requested value when the results error is set to
NO_ERROR(0)
Return type
Result

get_UEI8_with_subindex (option, subindex)
Call a get UEI byte value with a sublndex.

Parameters
* option (byte) - The command option.
* subIndex (byte) - The subindex of the entity.

Returns
Result object containing the requested value when the results error is set to
NO_ERROR(0)

Return type
Result

get_UEIBytes (option, buffer_length=65536)
Get a UEI Bytes buffer on this entity.

Parameters
* option (byte) - The command option.
* buffer_length (unsigned int)- The sublndex of the entity.

Returns
Result object containing the requested value when the results error is set to
NO_ERROR(0)

412 Chapter 3. API Reference

BrainStem Reference Manual, Release 2.11.1

Return type
Result

property index
Return the entity index
Type
int
property module
returns the associated module object.

Type
Module

registerOptionCallback (option, enable, cb, pRef)

Registers a callback function based on a specific option code. Option code applies to the
cmd and index of the called API.

:param option The option code for the entities command and index. :type option: byte
:param enable Enable (True) or disable (False) streaming. :type enable: bool

:param cb Callback to be executed on the provided criteria. ‘type cb:
@ffi.callback(“unsigned char(aPacket*, void*)”)

:param pRef Handle to be passed to the provided callback. This handle must be kept
alive by the caller. :type pRef: ffi handle
Returns
An error result from the list of defined error codes in brainstem.result

setStreamEnabled (enable)

Enables streaming for all possible option codes within the cmd and index the entity was
created for.
Parameters
enable (bool) - Enable (True) or disable (False) streaming.
Returns
An error result from the list of defined error codes in brainstem.result

set_UEI16 (option, value)

Call a set UEI with short value on this entity.
Parameters
* option (byte) - The command option.
* value (short) - The short parameter to send.
Returns
An error result from the list of defined error codes in brainstem.result

set_UEI1l6_with_subindex (option, subindex, value)

Call a set UEI short value with a sublndex.
Parameters
* option (byte) - The command option.
* subIndex (byte) - The sublndex of the entity.
* value (short) - The short parameter to send.
Returns
An error result from the list of defined error codes in brainstem.result

set_UEI32 (option, value)

Call a set UEI with int value on this entity.
Parameters
* option (byte) - The command option.

3.2,

Python API Reference

413

BrainStem Reference Manual, Release 2.11.1

* value (int) - The int parameter to send.

set_UEI32_with_subindex (option, subindex, value)

Call a set UEI int value with a sublndex.
Parameters
* option (byte) - The command option.
* subIndex (byte) - The sublndex of the entity.
* value (int) - The int parameter to send.
Returns
An error result from the list of defined error codes in brainstem.result

set_UEIS (option, value)

Call a set UEI with byte value on this entity.
Parameters
* option (byte) - The command option.
* value (byte) - The byte parameter to send.
Returns
An error result from the list of defined error codes in brainstem.result

set_UEI8_with_subindex (option, sublndex, value)

Call a set UEI byte value with a sublndex.
Parameters
* option (byte) - The command option.
* subIndex (byte) - The subindex of the entity.
* value (byte) - The byte parameter to send.
Returns
An error result from the list of defined error codes in brainstem.result

set_UEIBytes (option, buffer)

Call a set UEI with buffer and length of buffer on this entity.
Parameters
* option (byte) - The command option.
* buffer (bytearray ()) - The buffer to be sent
Returns
An error result from the list of defined error codes in brainstem.result

3.2.11 Equalizer

class brainstem.entity.Equalizer (module, index)

EqualizerClass: Provides receiver and transmitter gain/boost/emphasis settings for some of
Acroname’s products. Please see product documentation for further details.

getReceiverConfig (channel)

Gets the receiver configuration for a given channel. Configuration of the receiver.
Parameters
channel (const unsigned char)- The equalizer receiver channel.
Returns
Result object containing the requested value when the results error is set to
NO_ERROR(0)
Return type
Result

87 https://acroname.com/reference/brainstem/terms.htmi

414 Chapter 3. API Reference

BrainStem Reference Manual, Release 2.11.1

getTransmitterConfig ()
Gets the transmitter configuration Configuration of the Transmitter.

Returns
Result object containing the requested value when the results error is set to

NO_ERROR(0)

Return type
Result

setReceiverConfig (channel, config)
Sets the receiver configuration for a given channel.

Parameters
* channel (const unsigned char) - The equalizer receiver channel.

* config (const unsigned char) - Configuration to be applied to the
receiver.

Returns
An error result from the list of defined error codes in brainstem.result

Return type
unsigned byte

setTransmitterConfig (config)

Sets the transmitter configuration

Parameters
config(const unsigned char) - Configuration to be applied to the trans-

mitter.

Returns
An error result from the list of defined error codes in brainstem.result

Return type
unsigned byte

3.2.12 12C

class brainstem.entity.I2C (module, index)
I2CClass: Interface the 12C buses on BrainStem modules. The class provides a way to send
read and write commands to 12C devices on the entities bus.

getSpeed ()
Get 12C bus speed. This call gets the communication speed for I12C transactions through

this API. Speed is an enumeration value which can take the following values. 1 - 100Khz
2 - 400Khz 3 - 1MHz - The speed setting value.

Returns
Result object containing the requested value when the results error is set to

NO_ERROR(0)

Return type
Result

read (address, readlLength)
Read from a device on this 12C bus.
Parameters
* address (const int)-
— The 12C address (7bit <XXXX-XXX0>) of the device to read.
* readLength (const int)-
— The length of the data to read in bytes.

3.2. Python API Reference 415

BrainStem Reference Manual, Release 2.11.1

Returns
Result object containing the requested value when the results error is set to
NO_ERROR(0)

Return type
Result

setPullup (bEnable)

Set bus pull-up state. This call only works with stems that have software controlled pull-
ups. Check the datasheet for more information. This parameter is saved when sys-
tem.save is called.
Parameters
bEnable (const bool) -
« true enables pull-ups false disables them.
Returns
An error result from the list of defined error codes in brainstem.result
Return type
unsigned byte

setSpeed (speed)

Set 12C bus speed. This call sets the communication speed for 12C transactions through
this API. Speed is an enumeration value which can take the following values. 1 - 100Khz
2 -400Khz 3 - 1MHz
Parameters
speed (const unsigned char)-
» The speed setting value.
Returns
An error result from the list of defined error codes in brainstem.result
Return type
unsigned byte

write (address, buffer)

Write to a device on this 12C bus.

Parameters

address (const int)-

+ The 12C address (7bit <XXXX-XXX0>) of the device to write.
Returns

An error result from the list of defined error codes in brainstem.result
Return type

unsigned byte

3.2.13 Link

A module that provides a Spec class for specifying a connection to a BrainStem module.

A Spec instance fully describes a connection to a brainstem module. In the case of USB based stems this is
simply the serial number of the module. For TCPIP based stems this is an IP address and TCP port.

For more information about links and the Brainstem network see the Acroname BrainStem Reference®®

class brainstem.link.Spec (fransport, serial_number, module, model, **keywords)
Spec class for specifying connection details

Instances of Spec represent the connection details for a brainstem link. The Spec class also contains
constants representing the possible transport types for BrainStem modules.

88 hitps://acroname.com/reference

416 Chapter 3. API Reference

https://acroname.com/reference

BrainStem Reference Manual, Release 2.11.1

Parameters

* transport (int) - One of USB, TCPIP, SERIAL or AETHER.

* serial_number (int) - The module serial number.

* module - The module address on the Brainstem network.

* model - The device model number of the Brainstem module.

+ **keywords - For TCPIP, SERIAL and AETHER connections. The possibilities are,
— ip_address: (int/str) The IPV4 address for a TCPIP/AETHER connection type.
— ip_port: (int/str) The port for a TCPIP/AETHER connection type.
— port: (str) The serial port for a SERIAL connection type.
— baudrate: (int/str) The baudrate for a SERIAL connection type.

AETHER = 4
AETHER transport type.

INVALID = 0
INVALID Undefined transport type.

SERIAL = 3
SERIAL transport type.
TCPIP = 2

TCPIP transport type.

USB =1
USB transport type.

static cca_spec_to_python_spec (cca _spec)
Internal: Translate cffi spec into python Spec

class brainstem.link.Status
Status variables represent the link status possibilities for Brainstem Links.

Status States:

« STOPPED (0)
* INITIALIZING (1)
* RUNNING (2)
« STOPPING (3)
* SYNCING (4)
* INVALID_LINK_STREAM (5)
* I0_ERROR (6)
*« UNKNOWN_ERROR (7)

class brainstem.link.StreamStatusEntry (key, value)

property key
A unique key made up of module, cmd, option, index, subindex

Type
unsigned long long (64bit)

3.2. Python API Reference 417

BrainStem Reference Manual, Release 2.11.1

property value

The Value associated with the key

Type
unsigned int (32bit)
class brainstem.link.aEtherConfig

aEther configuration class for configuring AETHER connection types.
Note: If localOnly == false AND networklInterface is default (0 or LOCALHOST_IP_ADDRESS) it will be
populated with the auto-selected interface upon successful connection.
enabled

True: Client-Server model is used; False: Direct module control is used.

fallback
True: If connections fails it will automatically search for network connections.

localOnly
True: Restricts access to localhost; False: Expose device to external network.

assignedPort
Server assigned port after successful connection.

networkInterface
Network interface to use for connections.

3.2.14 Module

A module that provides base classes for BrainStem Modules and Entities.

The Module and Entity classes are designed to be extended for specific types of BrainStem Modules and
Entities. For more information about Brainstem Modules and Entities, please see the Terminology®® section of
the Acroname BrainStem Reference®
class brainstem.module.Module (address, enable_auto_networking=True, model=0)
The Module Entity provides a generic interface to a BrainStem hardware module. The Module Class
is the parent class for all BrainStem modules. Each module inherits from Module and implements its
hardware specific features.
property address
Module address of the device
Type
unsigned byte
property bAutoNetworking
Return the current networking mode.
Type
bool
classQuantity (command)

Queries the module to determine how many entities of the specified class are implemented by the
module. Zero is a valid return value. For example, calling classQuantity with the command param-
eter of cmdANALOG would return the number of analog entities implemented by the module.

89 https://acroname.com/reference/brainstem/terms.html
90 https://acroname.com/reference

418 Chapter 3. API Reference

https://acroname.com/reference/brainstem/terms.html
https://acroname.com/reference

BrainStem Reference Manual, Release 2.11.1

Parameters
command (unsigned byte) - One of the UEI commands (cmdXXX).

Returns
Result object containing the requested value when the results error is set to
NO_ERROR(0)

connect (transport, serial_number)
Connect to a Module with a transport type and serial number.
Parameters

* transport (Spec. transport) - (Spec.transport): One of USB, TCPIP, SERIAL
or AETHER.

* serial_number (unsigned int)- The module serial_number to look for.

Returns
An error result from the list of defined error codes in brainstem.result
connectFromSpec (Spec)
Connect to a BrainStem module with a Spec.

Parameters
spec (Spec) - The specifier for the connection.

Returns
An error result from the list of defined error codes in brainstem.result
connectThroughLinkModule (module)
Connects to a Brainstem module on a BrainStem network, through the module given as an argument.
The module passed in must have an active valid connection.

Parameters
module (Module) - The brainstem module to connect through.

Returns
An error result from the list of defined error codes in brainstem.result

disconnect ()
Disconnect from the Brainstem module.

discoverAndConnect (fransport, serial_number=0)
Discover and connect from the Module level.

A discover-based connect. This member function will connect to the first available BrainStem found
on the given transport. If the serial number is passed, it will only connect to the module with that
serial number. Passing 0 or None as the serial number will create a link to the first link module found
on the specified transport.

Parameters

* transport (Spec. transport) - (Spec.transport): One of USB, TCPIP, SERIAL
or AETHER.

* serial_number (unsigned int)- The module serial_number to look for.

Returns
An error result from the list of defined error codes in brainstem.result

3.2,

Python API Reference 419

BrainStem Reference Manual, Release 2.11.1

entityGroup (command, index)

Queries the module the group assigned to an entity and index. Entities groups are used to specify
when certain hardware features are fundamentally related. E.g. certain hardware modules may
have some digital pins associated with an adjustable voltage rail; these digitals would be in the
same group as the rail. Zero is the default group.

Parameters
command (unsigned byte) - One of the UEI commands (cmdXXX).

Returns
Result object containing the requested value when the results error is set to
NO_ERROR(0)
getBuild ()
Get the modules firmware build number The build number is a unique hash assigned to a specific
firmware.

Returns
Result object containing the requested value when the results error is set to
NO_ERROR(0)
getConfig ()
Gets the links current aEther configuration
Returns

Result object containing the requested value when the results error is set to
NO_ERROR(0)

Return type
Result containing a aEtherConfig

getModuleAddress ()
Get the address of the module object.

This method changes the local address of the module, not of the device. It is possible to get the
module address of the device via system.getModuleSoftwareOffset().

Returns
Result object containing the requested value when the results error is set to
NO_ERROR(0)

getStatus ()
Returns the status of the BrainStem connection See brainstem.link.Status for the possible states.

hasUEI (command, option, index, flags)

Queries the module to determine if it implements a UEI. Each UEI has a command, option or variant,
index and flag. The hasUEI method queries for a fully specified UEI. Returns aErrNone if the variation
is supported and an appropriate error if not. This call is blocking for up to the nMSTimeout period.

Parameters
* command (unsigned byte) - One of the UElI commands (cmdXXX).
* option (unsigned byte) - The option or variant of the command.
* index (unsigned byte) - The entity index.
» flags (unsigned byte) - The flags (UeiOPTION_SET or ueiOPTION_GET).

Returns
Result object containing the requested value when the results error is set to
NO_ERROR(0)

420 Chapter 3. API Reference

BrainStem Reference Manual, Release 2.11.1

property id
A unique identifier of the associated module
Type
unsigned int
isConnected ()
Returns true if the Module has an active connection or false otherwise
property link
return the current link or None.
Type
Link
property model
Model number of the device
Type
unsigned byte
reconnect ()

Reconnect a lost connection to a Brainstem module.

setConfig (config)
Sets the links aEther configuration. Note: Configuration must be set BEFORE connection.

Parameters
config (aEtherConfig) - (aEtherConfig object): aEther configuration to be set.

Returns
An error result from the list of defined error codes in brainstem.result
setModuleAddress (address)
Set the address of the module object.

This method changes the local address of the module, not of the device. It is possible to set the
module address of the device via system.setModuleSoftwareOffset().

Parameters
address (unsigned byte) - The module address to switch to for this module in-
stance.

Returns
An error result from the list of defined error codes in brainstem.result

setNetworkingMode (mode)

Changes the networking mode of the stem object. Auto mode is enabled by default which allows au-
tomatic adjustment of the module/stems networking configuration. Refer to BrainStem Networking
at www.acroname.com/support

Parameters
mode (bool) - Mode to be set. True = Auto; False = Manual

Returns
An error result from the list of defined error codes in brainstem.result

subClassQuantity (command, index)

Queries the module to determine how many subclass entities of the specified class are imple-
mented by the module for a given entity index. This is used for entities which may be 2-dimensional.
E.g. cmdMUX subclasses are the number of channels supported by a particular mux type (index);

3.2,

Python API Reference 421

BrainStem Reference Manual, Release 2.11.1

as a specific example, a module may support 4 UART channels, so subClassQuantity(cmdMUX,
aMUX_UART...) could return 4. Zero is a valid return value.

Parameters
command (unsigned byte) - One of the UEI commands (cmdXXX).

Returns
Result object containing the requested value when the results error is set to
NO_ERROR(0)

3.2.15 Mux

class brainstem.entity.Mux (module, index)

MuxClass: A MUX is a multiplexer that takes one or more similar inputs (bus, connection, or
signal) and allows switching to one or more outputs. An analogy would be the switchboard of
a telephone operator. Calls (inputs) come in and by re-connecting the input to an output, the
operator (multiplexer) can direct that input to on or more outputs.

One possible output is to not connect the input to anything which essentially disables that
input’s connection to anything.

Not every MUX has multiple inputs. Some may simply be a single input that can be enabled
(connected to a single output) or disabled (not connected to anything).

getChannel ()

Get the current selected mux channel. Indicates which chanel is selected.
Returns
Result object containing the requested value when the results error is set to
NO_ERROR(0)
Return type
Result

getChannelVoltage (channel)

Get the voltage of the indicated mux channel. 32 bit signed integer (in microvolts) based
on the board’s ground and reference voltages. Note: Not all modules provide 32 bits of
accuracy; Refer to the module’s datasheet to determine the analog bit depth and reference
voltage.
Parameters
channel (const unsigned char) - The channel in which voltage was
requested.
Returns
Result object containing the requested value when the results error is set to
NO_ERROR(0)
Return type
Result

getConfiguration ()

Get the configuration of the mux. integer representing the mux configuration either default,
or split-mode.
Returns
Result object containing the requested value when the results error is set to
NO_ERROR(0)
Return type
Result

422 Chapter 3. API Reference

BrainStem Reference Manual, Release 2.11.1

getEnable ()

Get the mux enable/disable status true: mux is enabled, false: the mux is disabled.
Returns
Result object containing the requested value when the results error is set to
NO_ERROR(0)
Return type
Result

getSplitMode ()

Get the current split mode mux configuration. integer representing the channel selection
for each sub-channel within the mux. See the data-sheet for the device for specific infor-

mation.
Returns
Result object containing the requested value when the results error is set to
NO_ERROR(0)
Return type
Result

setChannel (channel)

Set the current mux channel.
Parameters
channel (const unsigned char)-mux channelto select.
Returns
An error result from the list of defined error codes in brainstem.result
Return type
unsigned byte

setConfiguration (config)

Set the configuration of the mux.

Parameters
config(const int)-integerrepresenting the mux configuration either mux-
Config_default, or muxConfig_splitMode.

Returns
An error result from the list of defined error codes in brainstem.result

Return type
unsigned byte

setEnable (bEnable)

Enable the mux.

Parameters
bEnable (const unsigned char) - true: enables the mux for the selected
channel.

Returns
An error result from the list of defined error codes in brainstem.result

Return type
unsigned byte

setSplitMode (splitMode)

Sets the mux’s split mode configuration.
Parameters
splitMode (const int) - integer representing the channel selection for
each sub-channel within the mux. See the data-sheet for the device for spe-
cific information.
Returns
An error result from the list of defined error codes in brainstem.result

3.2,

Python API Reference

423

BrainStem Reference Manual, Release 2.11.1

Return type
unsigned byte

3.2.16 PDChannellLogger

class brainstem.pd_channel_logger.BS_PD_Packet (channel=0, seconds=0, uSeconds=0,
direction=0, sop=0, event=0, payload=[])
Python representation of BS_PD_Packet_t (C structure)
 channel (uint8_t): Channel/Index
» seconds (uint8_t): Seconds in device time since power on.
» uSeconds (uint32_t): Micro Seconds in device time since power on.
«direction (enumeration): Direction of packet transmission relative to the device.

Invalid =0

Transmit =1

Receive =2

Unknown = 3

*sop (enumeration): See bs_pd_packet.h for more details
- SOP=0
- SOP’ =1
- SOP” =2
— Unknown =3
«event (enumeration): See powerdeliveryLogEvent in aProtocolDefs.h
— pdEventNone = 0
— pdEventPacket = 1
— pdEventConnect = 2
— pdEventDisconnect = 3
— pdEventCableResetReceived = 4
— pdEventCableResetSent = 5
— pdEventHardResetReceived = 6
— pdEventHardResetSent = 7
— pdEventMessageTransmitFailed = 8 // No GoodCRC received
— pdEventMessageTransmitDiscarded = 9 // Incoming message detected so tx discarded
— pdEventPDFunctionDisabled = 10 // PD Stack is giving up on PD Comms
— pdEventVBUSEnabled = 11
— pdEventVBUSDisabled = 12
— pdEventVCONNEnabled = 13
— pdEventVCONNDisabled = 14

424 Chapter 3. API Reference

BrainStem Reference Manual, Release 2.11.1

— pdEventRp1A5 = 15 // Used for Src Atomic Message Sequences
— pdEventRp3A0 = 16 // Used for Src Atomic Message Sequences
— pdEventBistEnter = 17
— pdEventBistExit = 18
— pdEventLast = 19 // Should always be last!!

» payload (list): Raw PD Packet data

class brainstem.pd_channel_logger.PDChannelLogger (module, index, buffer_length=1024)
Manages BrainStem Power Delivery logging packets.

Parameters
* module (Module) - : Reference to an existing BrainStem Module
* index (unsigned byte) - Index/channel logging should be enabled for.

* buffer_length (unsigned short)- Number of packets the class should queue
before dropping.
property buffer_length
Gets the buffer length

Returns
Buffer length of the associated object.

Return type
unsigned int
getPacket ()
Attempts to takes a packet from the internal buffer.
Returns
Result object containing the requested value when the results error is set to
NO_ERROR(0)
getPackets (buffer_length=100)
Attempts to take a multiple packets (up to a maximum) from the internal buffer.
Returns
Result object containing the requested value when the results error is set to
NO_ERROR(0)
property index
Gets the Index/Channel

Returns
Index/channel of the associated object.

Return type
unsigned byte

property module
Gets the Module object.

Returns
The associated module object.

Return type
Module

3.2. Python API Reference 425

BrainStem Reference Manual, Release 2.11.1

setEnabled (enabled)
Enables Power Delivery logging.

Parameters
enable (bool) - True enables logging; False disables logging

return: An error result from the list of defined error codes in brainstem.result

3.2.17 Pointer

class brainstem.entity.Pointer (module, index)
PointerClass: Allows access to the reflex scratchpad from a host computer.

The Pointers access the pad which is a shared memory area on a BrainStem module. The
interface allows the use of the BrainStem scratchpad from the host, and provides a mechanism
for allowing the host application and BrainStem relexes to communicate.

The Pointer allows access to the pad in a similar manner as a file pointer accesses the under-
lying file. The cursor position can be set via setOffset. A read of a character short or int can
be made from that cursor position. In addition the mode of the pointer can be set so that the
cursor position automatically increments or set so that it does not this allows for multiple reads
of the same pad value, or reads of multi-record values, via an incrementing pointer.

getChar ()

Get a char (1 byte) value from the pointer at this object’s index, where elements are 1 byte
long. The value of a single character (1 byte) stored in the pointer. All possible standard
UElI return values.
Returns
Result object containing the requested value when the results error is set to
NO_ERROR(0)
Return type
Result

getInt ()

Get an int (4 bytes) value from the pointer at this objects index, where elements are 4
bytes long The value of a single int (4 byte) stored in the pointer. All possible standard
UElI return values.
Returns
Result object containing the requested value when the results error is set to
NO_ERROR(0)
Return type
Result

getMode ()
Get the mode of the pointer The mode: aPOINTER_MODE_STATIC or
aPOINTER_MODE_AUTO_INCREMENT. All possible standard UEI return values.
Returns
Result object containing the requested value when the results error is set to
NO_ERROR(0)
Return type
Result

getOffset ()
Get the offset of the pointer The value of the offset. All possible standard UEI return values.

426 Chapter 3. API Reference

BrainStem Reference Manual, Release 2.11.1

Returns
Result object containing the requested value when the results error is set to
NO_ERROR(0)

Return type
Result

getShort ()

Get a short (2 byte) value from the pointer at this objects index, where elements are 2
bytes long The value of a single short (2 byte) stored in the pointer. All possible standard
UElI return values.
Returns
Result object containing the requested value when the results error is set to
NO_ERROR(0)
Return type
Result

getTransferStore ()

Get the handle to the store. The handle of the store. All possible standard UEI return
handles.
Returns
Result object containing the requested value when the results error is set to
NO_ERROR(0)
Return type
Result

initiateTransferFromStore (lransferLength)

Transfer data from the store. All possible standard UEI return values.
Parameters
transferlLength (unsigned char) - The length of the data transfer.
Returns
An error result from the list of defined error codes in brainstem.result
Return type
unsigned byte

initiateTransferToStore (fransferLength)

Transfer data to the store. All possible standard UEI return values.
Parameters
transferLength (unsigned char) - The length of the data transfer.
Returns
An error result from the list of defined error codes in brainstem.result
Return type
unsigned byte

setChar (value)

Set a char (1 byte) value to the pointer at this object’s element index, where elements are
1 byte long. All possible standard UEI return values.
Parameters
value (const unsigned char)- The single char (1 byte) value to be stored
in the pointer.
Returns
An error result from the list of defined error codes in brainstem.result
Return type
unsigned byte

setInt (value)
Set an int (4 bytes) value from the pointer at this objects index, where elements are 4

3.2,

Python API Reference

427

BrainStem Reference Manual, Release 2.11.1

bytes long All possible standard UEI return values.

Parameters
value (const unsigned int) - The single int (4 byte) value to be stored
in the pointer.

Returns
An error result from the list of defined error codes in brainstem.result

Return type
unsigned byte

setMode (mode)

Set the mode of the pointer All possible standard UEI return values.

Parameters
mode (unsigned char) - The mode: aPOINTER_MODE_STATIC or
aPOINTER_MODE_AUTO_INCREMENT.

Returns
An error result from the list of defined error codes in brainstem.result

Return type
unsigned byte

setOffset (offset)

Set the offset of the pointer All possible standard UEI return values.
Parameters
offset (unsigned short) - The value of the offset.
Returns
An error result from the list of defined error codes in brainstem.result
Return type
unsigned byte

setShort (value)

Set a short (2 bytes) value to the pointer at this object’s element index, where elements
are 2 bytes long. All possible standard UEI return values.
Parameters
value (const unsigned short)- The single short (2 byte) value to be set
in the pointer.
Returns
An error result from the list of defined error codes in brainstem.result
Return type
unsigned byte

setTransferStore (handle)

Set the handle to the store. All possible standard UEI return handles.
Parameters
handle (unsigned char) - The handle of the store.
Returns
An error result from the list of defined error codes in brainstem.result
Return type
unsigned byte

428 Chapter 3. API Reference

BrainStem Reference Manual, Release 2.11.1

3.2.18 Port

class brainstem.entity.Port (module, index)

Port Class: The Port Entity provides software control over the most basic items related to a
USB Port. This includes everything from the complete enable and disable of the entire port to
the individual control of specific pins. Voltage and Current measurements are also included
for devices which support the Port Entity.

getAllocatedPower ()

Gets the currently allocated power This value is determined by the power manager which
is responsible for budgeting the systems available power envelope. Variable to be filled
with the allocated power in milli-watts (mW).
Returns
Result object containing the requested value when the results error is set to
NO_ERROR(0)
Return type
Result

getAvailablePower ()

Gets the current available power. This value is determined by the power manager which
is responsible for budgeting the systems available power envelope. Variable to be filled
with the available power in milli-watts (mW).
Returns
Result object containing the requested value when the results error is set to
NO_ERROR(0)
Return type
Result

getCClEnabled ()

Gets the current enable value of the CC1 lines. Sub-component of getCCEnabled. 1 =
CC1 enabled; 0 = CC1 disabled.
Returns
Result object containing the requested value when the results error is set to
NO_ERROR(0)
Return type
Result

getCClState ()

Gets the current CC1 Strapping on local and remote The state is a bit packed value where
the upper byte is used to represent the remote or partner device attached to the ports
resistance and the lower byte is used to represent the local or hubs resistance. Vari-
able to be filled with an packed enumerated representation of the CC state. Enumera-
tion values for each byte are as follows: - None = 0 = portCC1State_None - Invalid = 1
= portCC1State_Invalid - Rp (default) = 2 = portCC1State_RpDefault - Rp (1.5A) =3 =
portCC1State_Rp1p5 - Rp (8A) = 4 = portCC1State_Rp3p0 - Rd =5 = portCC1State_Rd
- Ra =6 = portCC1State_Ra - Managed by controller = 7 = portCC1State_Managed - Un-
known = 8 = portCC1State_Unknown
Returns
Result object containing the requested value when the results error is set to
NO_ERROR(0)
Return type
Result

getCC2Enabled ()
Gets the current enable value of the CC2 lines. Sub-component of getCCEnabled. 1 =

3.2. Python API Reference 429

BrainStem Reference Manual, Release 2.11.1

CC2 enabled; 0 = CC2 disabled.
Returns
Result object containing the requested value when the results error is set to
NO_ERROR(0)
Return type
Result

getCC2State ()

Gets the current CC2 Strapping on local and remote The state is a bit packed value where
the upper byte is used to represent the remote or partner device attached to the ports
resistance and the lower byte is used to represent the local or hubs resistance. Vari-
able to be filled with an packed enumerated representation of the CC state. Enumera-
tion values for each byte are as follows: - None = 0 = portCC2State_None - Invalid = 1
= portCC2State_Invalid - Rp (default) = 2 = portCC2State_RpDefault - Rp (1.5A) =3 =
portCC2State_Rp1p5 - Rp (3A) = 4 = portCC2State_Rp3p0 - Rd =5 = portCC2State_Rd
- Ra =6 = portCC2State_Ra - Managed by controller = 7 = portCC2State_Managed - Un-
known = 8 = portCC2State_Unknown
Returns
Result object containing the requested value when the results error is set to
NO_ERROR(0)
Return type
Result

getCCCurrentLimit ()

Gets the CC Current Limit Resistance The CC Current limit is the value that’s set for the
pull up resistance on the CC lines for basic USB-C negotations. Variable to be filled with
an enumerated representation of the CC Current limit. 0 = None, 1 = Default (500/900mA),
2=15A,and 3=3.0A
Returns
Result object containing the requested value when the results error is set to
NO_ERROR(0)
Return type
Result

getCCEnabled ()

Gets the current enable value of the CC lines.: Sub-component (CC) of getEnabled. 1 =
CC enabled; 0 = CC disabled.
Returns
Result object containing the requested value when the results error is set to
NO_ERROR(0)
Return type
Result

getCurrentLimit ()

Gets the current limit of the port. Variable to be filled with the limit in microAmps (uA).
Returns
Result object containing the requested value when the results error is set to
NO_ERROR(0)
Return type
Result

getCurrentLimitMode ()

Gets the current limit mode. The mode determines how the port will react to an over
current condition. Variable to be filled with an enumerated representation of the current
limit mode. Available modes are product specific. See the reference documentation.

430 Chapter 3. API Reference

BrainStem Reference Manual, Release 2.11.1

Returns
Result object containing the requested value when the results error is set to
NO_ERROR(0)

Return type
Result

getDataEnabled ()

Gets the current enable value of the data lines.: Sub-component (Data) of getEnabled. 1
= Data enabled; 0 = Data disabled.
Returns
Result object containing the requested value when the results error is set to
NO_ERROR(0)
Return type
Result

getDataHS1Enabled ()

Gets the current enable value of the High Speed A side (HSA) data lines.: Sub-component
of getDataHSEnabled. 1 = Data enabled; 0 = Data disabled.
Returns
Result object containing the requested value when the results error is set to
NO_ERROR(0)
Return type
Result

getDataHS2Enabled ()

Gets the current enable value of the High Speed B side (HSB) data lines.: Sub-component
of getDataHSEnabled. 1 = Data enabled; 0 = Data disabled.
Returns
Result object containing the requested value when the results error is set to
NO_ERROR(0)
Return type
Result

getDataHSEnabled ()

Gets the current enable value of the High Speed (HS) data lines. Sub-component of
getDataEnabled. 1 = Data enabled; 0 = Data disabled.
Returns
Result object containing the requested value when the results error is set to
NO_ERROR(0)
Return type
Result

getDataHSRoutingBehavior ()

Gets the HighSpeed Data Routing Behavior. The mode determines how the port will route
the data lines. Variable to be filled with an enumerated representation of the routing be-
havior. Available modes are product specific. See the reference documentation.
Returns
Result object containing the requested value when the results error is set to
NO_ERROR(0)
Return type
Result

getDataRole ()
Gets the Port Data Role. The data role to be set. See datasheet for details.

3.2,

Python API Reference 431

BrainStem Reference Manual, Release 2.11.1

Returns
Result object containing the requested value when the results error is set to
NO_ERROR(0)

Return type
Result

getDataSSl1Enabled ()

Gets the current enable value of the Super Speed A side (SSA) data lines.: Sub-
component of getDataSSEnabled. 1 = Data enabled; 0 = Data disabled.
Returns
Result object containing the requested value when the results error is set to
NO_ERROR(0)
Return type
Result

getDataSS2Enabled ()

Gets the current enable value of the Super Speed B side (SSB) data lines.: Sub-
component of getDataSSEnabled. 1 = Data enabled; 0 = Data disabled.
Returns
Result object containing the requested value when the results error is set to
NO_ERROR(0)
Return type
Result

getDataSSEnabled ()

Gets the current enable value of the Super Speed (SS) data lines. Sub-component of
getDataEnabled. 1 = Data enabled; 0 = Data disabled.
Returns
Result object containing the requested value when the results error is set to
NO_ERROR(0)
Return type
Result

getDataSSRoutingBehavior ()

Gets the SuperSpeed Data Routing Behavior. The mode determines how the port will
route the data lines. Variable to be filled with an enumerated representation of the routing
behavior. Available modes are product specific. See the reference documentation.
Returns
Result object containing the requested value when the results error is set to
NO_ERROR(0)
Return type
Result

getDataSpeed ()

Gets the speed of the enumerated device. Bit mapped value representing the devices
speed. See “Devices” reference for details.
Returns
Result object containing the requested value when the results error is set to
NO_ERROR(0)
Return type
Result

getEnabled ()

Gets the current enable value of the port. 1 = Fully enabled port; 0 = One or more disabled
components.

432 Chapter 3. API Reference

BrainStem Reference Manual, Release 2.11.1

Returns
Result object containing the requested value when the results error is set to
NO_ERROR(0)

Return type
Result

getErrors ()

Returns any errors that are present on the port. Calling this function will clear the current
errors. If the error persists it will be set again. Bit mapped field representing the current
errors of the ports
Returns
Result object containing the requested value when the results error is set to
NO_ERROR(0)
Return type
Result

getHSBoost ()

Gets the ports USB 2.0 High Speed Boost Settings The setting determines how much
additional drive the USB 2.0 signal will have in High Speed mode. An enumerated rep-
resentation of the boost range. Available modes are product specific. See the reference
documentation.
Returns
Result object containing the requested value when the results error is set to
NO_ERROR(0)
Return type
Result

getMode ()

Gets current mode of the port Bit mapped value representing the ports mode. See “De-
vices” reference for details.
Returns
Result object containing the requested value when the results error is set to
NO_ERROR(0)
Return type
Result

getName (buffer_length=65536)

Gets a user defined name of the port. Helpful for identifying ports/devices in a static en-
vironment. Length that was actually received and filled.
Parameters
buffer_length - Length of the buffer to be filed
Returns
Result object containing the requested value when the results error is set to
NO_ERROR(0)
Return type
Result

getPowerEnabled ()

Gets the current enable value of the power lines.: Sub-component (Power) of getEnabled.
1 = Power enabled; 0 = Power disabled.
Returns
Result object containing the requested value when the results error is set to
NO_ERROR(0)
Return type
Result

3.2. Python API Reference 433

BrainStem Reference Manual, Release 2.11.1

getPowerLimit ()

Gets the user defined power limit for the port. Variable to be filled with the power limit in
milli-watts (mW).
Returns
Result object containing the requested value when the results error is set to
NO_ERROR(0)
Return type
Result

getPowerLimitMode ()

Gets the power limit mode. The mode determines how the port will react to an over power
condition. Variable to be filled with an enumerated representation of the power limit mode.
Available modes are product specific. See the reference documentation.
Returns
Result object containing the requested value when the results error is set to
NO_ERROR(0)
Return type
Result

getPowerMode ()

Gets the Port Power Mode: Convenience Function of get/setPortMode The current power
mode.
Returns
Result object containing the requested value when the results error is set to
NO_ERROR(0)
Return type
Result

getState ()

A bit mapped representation of the current state of the port. Reflects what he port IS which
may differ from what was requested. Variable to be filled with the current state.
Returns
Result object containing the requested value when the results error is set to
NO_ERROR(0)
Return type
Result

getVbusAccumulatedPower ()

Gets the Vbus Accumulated Power The accumuled power on Vbus in milliwatt-hours.
Returns
Result object containing the requested value when the results error is set to
NO_ERROR(0)
Return type
Result

getVbusCurrent ()
Gets the Vbus Current The current in microamps (1 == 1e-6A) currently present on Vbus.
Returns
Result object containing the requested value when the results error is set to
NO_ERROR(0)
Return type
Result

getVbusVoltage ()
Gets the Vbus Voltage The voltage in microvolts (1 == 1e-6V) currently present on Vbus.

434 Chapter 3. API Reference

BrainStem Reference Manual, Release 2.11.1

Returns
Result object containing the requested value when the results error is set to
NO_ERROR(0)

Return type
Result

getVconnlEnabled ()

Gets the current enable value of the Vconn1 lines. Sub-component of getVconnEnabled.
1 = Vconn1 enabled; 0 = Vconn1 disabled.
Returns
Result object containing the requested value when the results error is set to
NO_ERROR(0)
Return type
Result

getVconn2Enabled ()

Gets the current enable value of the Vconn2 lines. Sub-component of getVconnEnabled.
1 = Vconn2 enabled; 0 = Vconn2 disabled.
Returns
Result object containing the requested value when the results error is set to
NO_ERROR(0)
Return type
Result

getVconnAccumulatedPower ()

Gets the Vconn Accumulated Power The accumuled power on Vconn in milliwatt-hours.
Returns
Result object containing the requested value when the results error is set to
NO_ERROR(0)
Return type
Result

getVconnCurrent ()

Gets the Vconn Current The current in microamps (1 == 1e-6A) currently present on
Vconn.
Returns
Result object containing the requested value when the results error is set to
NO_ERROR(0)
Return type
Result

getVconnEnabled ()

Gets the current enable value of the Vconn lines.: Sub-component (Vconn) of getEnabled.
1 = Vconn enabled; 0 = Vconn disabled.
Returns
Result object containing the requested value when the results error is set to
NO_ERROR(0)
Return type
Result

getVconnVoltage ()

Gets the Vconn Voltage The voltage in microvolts (1 == 1e-6V) currently present on
Vconn.
Returns
Result object containing the requested value when the results error is set to
NO_ERROR(0)

3.2. Python API Reference 435

BrainStem Reference Manual, Release 2.11.1

Return type
Result

getVoltageSetpoint ()

Gets the current voltage setpoint value for the port. the voltage setpoint of the port in uV.
Returns
Result object containing the requested value when the results error is set to
NO_ERROR(0)
Return type
Result

resetEntityToFactoryDefaults ()

Resets the PortClass Entity to it factory default configuration.
Returns
An error result from the list of defined error codes in brainstem.result
Return type
unsigned byte

resetVbusAccumulatedPower ()

Resets the Vbus Accumulated Power to zero.
Returns
An error result from the list of defined error codes in brainstem.result
Return type
unsigned byte

resetVconnAccumulatedPower ()

Resets the Vconn Accumulated Power to zero.
Returns
An error result from the list of defined error codes in brainstem.result
Return type
unsigned byte

setCClEnabled (enable)

Enables or disables the CC1 lines. Sub-component of setCCEnabled.

Parameters
enable (const unsigned char)-1=Enable CC1 lines; 0 = Disable CC1
lines.

Returns
An error result from the list of defined error codes in brainstem.result

Return type
unsigned byte

setCC2Enabled (enable)

Enables or disables the CC2 lines. Sub-component of setCCEnabled.

Parameters
enable (const unsigned char)-1=Enable CC2 lines; 0 = Disable CC2
lines.

Returns
An error result from the list of defined error codes in brainstem.result

Return type
unsigned byte

setCCCurrentLimit (value)

Sets the CC Current Limit Resistance The CC Current limit is the value that’s set for the
pull up resistance on the CC lines for basic USB-C negotations.

436 Chapter 3. API Reference

BrainStem Reference Manual, Release 2.11.1

Parameters
value (const unsigned char) - Variable to be filled with an enumerated
representation of the CC Current limit. 0 = None, 1 = Default (500/900mA), 2 =
1.5A, and 3 = 3.0A

Returns
An error result from the list of defined error codes in brainstem.result

Return type
unsigned byte

setCCEnabled (enable)

Enables or disables the CC lines. Sub-component (CC) of setEnabled.

Parameters
enable (const unsigned char) - 1= Enable CC lines; 0 = Disable CC
lines.

Returns
An error result from the list of defined error codes in brainstem.result

Return type
unsigned byte

setCurrentLimit (/imit)

Sets the current limit of the port.

Parameters
limit (const unsigned int) - Current limitto be applied in microAmps
(uA).

Returns
An error result from the list of defined error codes in brainstem.result

Return type
unsigned byte

setCurrentLimitMode (mode)

Sets the current limit mode. The mode determines how the port will react to an over current
condition.
Parameters
mode (const unsigned char)- Anenumerated representation of the cur-
rent limit mode. Available modes are product specific. See the reference doc-
umentation.
Returns
An error result from the list of defined error codes in brainstem.result
Return type
unsigned byte

setDataEnabled (enable)

Enables or disables the data lines. Sub-component (Data) of setEnabled.
Parameters
enable (const unsigned char)- 1= Enable data; 0 = Disable data.
Returns
An error result from the list of defined error codes in brainstem.result
Return type
unsigned byte

setDataHS1Enabled (enable)

Enables or disables the Hight Speed A side (HSA) data lines. Sub-component of set-
DataHSEnabled.
Parameters
enable (const unsigned char)- 1= Enable data; 0 = Disable data.

3.2,

Python API Reference 437

BrainStem Reference Manual, Release 2.11.1

Returns

An error result from the list of defined error codes in brainstem.result
Return type

unsigned byte

setDataHS2Enabled (enable)

Enables or disables the Hight Speed B side (HSB) data lines. Sub-component of set-
DataHSEnabled.
Parameters
enable (const unsigned char)-1=Enable data; 0 = Disable data.
Returns
An error result from the list of defined error codes in brainstem.result
Return type
unsigned byte

setDataHSEnabled (enable)

Enables or disables the High Speed (HS) data lines. Sub-component of setDataEnabled.
Parameters
enable (const unsigned char)- 1= Enable data; 0 = Disable data.
Returns
An error result from the list of defined error codes in brainstem.result
Return type
unsigned byte

setDataHSRoutingBehavior (mode)

Sets the HighSpeed Data Routing Behavior. The mode determines how the port will route
the data lines.
Parameters
mode (const unsigned char)- Anenumerated representation of the rout-
ing behavior. Available modes are product specific. See the reference docu-
mentation.
Returns
An error result from the list of defined error codes in brainstem.result
Return type
unsigned byte

setDataSS1Enabled (enable)

Enables or disables the Super Speed (SS) data lines. Sub-component of setDataEn-
abled.
Parameters
enable (const unsigned char)-1=Enable data; 0 = Disable data.
Returns
An error result from the list of defined error codes in brainstem.result
Return type
unsigned byte

setDataSS2Enabled (enable)

Enables or disables the Super Speed B side (SSB) data lines. Sub-component of set-
DataSSEnabled.
Parameters
enable (const unsigned char)-1=Enable data; 0 = Disable data.
Returns
An error result from the list of defined error codes in brainstem.result
Return type
unsigned byte

438 Chapter 3. API Reference

BrainStem Reference Manual, Release 2.11.1

setDataSSEnabled (enable)

Enables or disables the Super Speed (SS) data lines. Sub-component of setDataEn-
abled.
Parameters
enable (const unsigned char)- 1= Enable data; 0 = Disable data.
Returns
An error result from the list of defined error codes in brainstem.result
Return type
unsigned byte

setDataSSRoutingBehavior (mode)

Sets the SuperSpeed Data Routing Behavior. The mode determines how the port will
route the data lines.
Parameters
mode (const unsigned char)- Anenumerated representation of the rout-
ing behavior. Available modes are product specific. See the reference docu-
mentation.
Returns
An error result from the list of defined error codes in brainstem.result
Return type
unsigned byte

setEnabled (enable)

Enables or disables the entire port.

Parameters
enable (const unsigned char) - 1= Fully enable port; 0 = Fully disable
port.

Returns
An error result from the list of defined error codes in brainstem.result

Return type
unsigned byte

setHSBoost (boost)

Sets the ports USB 2.0 High Speed Boost Settings The setting determines how much
additional drive the USB 2.0 signal will have in High Speed mode.
Parameters
boost (const unsigned char) - An enumerated representation of the
boost range. Available value are product specific. See the reference docu-
mentation.
Returns
An error result from the list of defined error codes in brainstem.result
Return type
unsigned byte

setMode (mode)

Sets the mode of the port

Parameters
mode (const unsigned int) - Port mode to be set. See “Devices” docu-
mentation for details.

Returns
An error result from the list of defined error codes in brainstem.result

Return type
unsigned byte

3.2,

Python API Reference 439

BrainStem Reference Manual, Release 2.11.1

setName (buffer)

Sets a user defined name of the port. Helpful for identifying ports/devices in a static envi-
ronment.
Returns
An error result from the list of defined error codes in brainstem.result
Return type
unsigned byte

setPowerEnabled (enable)

Enables or Disables the power lines. Sub-component (Power) of setEnable.
Parameters
enable (const unsigned char)- 1= Enable power; 0 = Disable disable.
Returns
An error result from the list of defined error codes in brainstem.result
Return type
unsigned byte

setPowerLimit (/imit)

Sets a user defined power limit for the port.

Parameters
limit (const unsigned int) - Power limit to be applied in milli-watts
(mW).

Returns
An error result from the list of defined error codes in brainstem.result

Return type
unsigned byte

setPowerLimitMode (mode)

Sets the power limit mode. The mode determines how the port will react to an over power
condition.
Parameters
mode (const unsigned char)-Anenumerated representation of the power
limit mode to be applied Available modes are product specific. See the refer-
ence documentation.
Returns
An error result from the list of defined error codes in brainstem.result
Return type
unsigned byte

setPowerMode (powerMode)

Sets the Port Power Mode: Convenience Function of get/setPortMode
Parameters
powerMode (const unsigned char)- The power mode to be set.
Returns
An error result from the list of defined error codes in brainstem.result
Return type
unsigned byte

setVconnlEnabled (enable)

Enables or disables the Vconn1 lines. Sub-component of setVconnEnabled.
Parameters
enable (const unsigned char) - 1= Enable Vconn1 lines; 0 = Disable
Vconn1 lines.
Returns
An error result from the list of defined error codes in brainstem.result

440 Chapter 3. API Reference

BrainStem Reference Manual, Release 2.11.1

Return type
unsigned byte

setVconn2Enabled (enable)
Enables or disables the Vconn2 lines. Sub-component of setVconnEnabled.

Parameters
enable (const unsigned char) - 1= Enable Vconn2 lines; 0 = Disable

Vconn2 lines.

Returns
An error result from the list of defined error codes in brainstem.result

Return type
unsigned byte

setVconnEnabled (enable)
Enables or disables the Vconn lines. Sub-component (Vconn) of setEnabled.

Parameters
enable (const unsigned char)- 1= Enable Vconn lines; 0 = Disable

Vconn lines.

Returns
An error result from the list of defined error codes in brainstem.result

Return type
unsigned byte

setVoltageSetpoint (value)

Sets the current voltage setpoint value for the port.

Parameters
value (const unsigned int) - the voltage setpoint of the portin uV.

Returns
An error result from the list of defined error codes in brainstem.result

Return type
unsigned byte

3.2.19 Power Delivery

class brainstem.entity.PowerDelivery (module, index)
PowerDeliveryClass: Power Delivery or PD is a power specification which allows more charg-
ing options and device behaviors within the USB interface. This Entity will allow you to directly
access the vast landscape of PD.

getCableCurrentMax ()
Gets the maximum current capability report by the e-mark of the attached cable. Variable
to be filled with an enumerated representation of current. - Unknown/Unattached (0) - 3
Amps (1) - 5 Amps (2)
Returns
Result object containing the requested value when the results error is set to

NO_ERROR(0)
Return type
Result

getCableOrientation ()
Gets the current orientation being used for PD communication Variable filled with an enu-
meration of the orientation. - Unconnected (0) - CC1 (1) - CC2 (2)

3.2. Python API Reference

441

BrainStem Reference Manual, Release 2.11.1

Returns
Result object containing the requested value when the results error is set to
NO_ERROR(0)

Return type
Result

getCableSpeedMax ()

Gets the maximum data rate capability reported by the e-mark of the attached cable. Vari-
able to be filled with an enumerated representation of data speed. - Unknown/Unattached
(0)-USB2.0(1)-USB3.2gen1(2)-USB3.2/USB4gen2(3)-USB4gen3(4)
Returns
Result object containing the requested value when the results error is set to
NO_ERROR(0)
Return type
Result

getCableType ()

Gets the cable type reported by the e-mark of the attached cable. Variable to be filled
with an enumerated representation of the cable type. - Invalid, no e-mark and not Vconn
powered (0) - Passive cable with e-mark (1) - Active cable (2)
Returns
Result object containing the requested value when the results error is set to
NO_ERROR(0)
Return type
Result

getCableVoltageMax ()

Gets the maximum voltage capability reported by the e-mark of the attached cable. Vari-
able to be filled with an enumerated representation of voltage. - Unknown/Unattached (0)
- 20 Volts DC (1) - 30 Volts DC (2) - 40 Volts DC (3) - 50 Volts DC (4)
Returns
Result object containing the requested value when the results error is set to
NO_ERROR(0)
Return type
Result

getConnectionState ()

Gets the current state of the connection in the form of an enumeration. Pointer to be filled
with the current connection state.
Returns
Result object containing the requested value when the results error is set to
NO_ERROR(0)
Return type
Result

getFastRoleSwapCurrent ()

Gets the Fast Role Swap Current The fast role swap current refers to the amount of current
required by the Local Sink in order to successfully preform the swap. An enumerated
value referring to current swap value. - OA (0) - 900mA (1) - 1.5A (2) - 3A (3)
Returns
Result object containing the requested value when the results error is set to
NO_ERROR(0)
Return type
Result

442 Chapter 3. API Reference

BrainStem Reference Manual, Release 2.11.1

getFlagMode (flag)

Gets the current mode of the local partner flag/advertisement. These flags are apart of
the first Local Power Data Object and must be managed in order to accurately represent
the system to other PD devices. This API allows overriding of that feature. Overriding
may lead to unexpected behaviors. Variable to be filled with the current mode. - Disabled
(0) - Enabled (1) - Auto (2) default
Parameters
flag (const unsigned char) - Flag/Advertisement to be modified
Returns
Result object containing the requested value when the results error is set to
NO_ERROR(0)
Return type
Result

getNumberOfPowerDataObjects (partner, powerRole)

Gets the number of Power Data Objects (PDOs) for a given partner and power role. Vari-
able to be filled with the number of PDOs.
Parameters
* partner (const unsigned char) - Indicates which side of the PD con-
nection is in question. - Local = 0 = powerdeliveryPartnerLocal - Remote =
1 = powerdeliveryPartnerRemote
* powerRole (const unsigned char) - Indicates which power role of PD
connection is in question. - Source = 1 = powerdeliveryPowerRoleSource -
Sink = 2 = powerdeliveryPowerRoleSink
Returns
Result object containing the requested value when the results error is set to
NO_ERROR(0)
Return type
Result

getOverride ()

Gets the current enabled overrides Bit mapped representation of the current override con-
figuration.
Returns
Result object containing the requested value when the results error is set to
NO_ERROR(0)
Return type
Result

getPeakCurrentConfiguration ()

Gets the Peak Current Configuration for the Local Source. The peak current configura-
tion refers to the allowable tolerance/overload capabilities in regards to the devices max
current. This tolerance includes a maximum value and a time unit. An enumerated value
referring to the current configuration. - Allowable values are 0 - 4
Returns
Result object containing the requested value when the results error is set to
NO_ERROR(0)
Return type
Result

getPowerDataObject (pariner, powerRole, rulelndex)

Gets the Power Data Object (PDO) for the requested partner, powerRole and index. Vari-
able to be filled with the requested power rule.
Parameters

3.2. Python API Reference 443

BrainStem Reference Manual, Release 2.11.1

» partner (const unsigned char) - Indicates which side of the PD con-
nection is in question. - Local = 0 = powerdeliveryPartnerLocal - Remote =
1 = powerdeliveryPartnerRemote
* powerRole (const unsigned char) - Indicates which power role of PD
connection is in question. - Source = 1 = powerdeliveryPowerRoleSource -
Sink = 2 = powerdeliveryPowerRoleSink
* ruleIndex (const unsigned char)- Theindex of the PDO in question.
Valid index are 1-7.
Returns
Result object containing the requested value when the results error is set to
NO_ERROR(0)
Return type
Result

getPowerDataObjectEnabled (powerRole, ruleindex)

Gets the enabled state of the Local Power Data Object (PDO) for a given power role and
index. Enabled refers to whether the PDO will be advertised when a PD connection is
made. This does not indicate the currently active rule index. This information can be
found in Request Data Object (RDO). Variable to be filled with enabled state.
Parameters
* powerRole (const unsigned char) - Indicates which power role of PD
connection is in question. - Source = 1 = powerdeliveryPowerRoleSource -
Sink = 2 = powerdeliveryPowerRoleSink
* ruleIndex (const unsigned char)- Theindex of the PDO in question.
Valid index are 1-7.
Returns
Result object containing the requested value when the results error is set to
NO_ERROR(0)
Return type
Result

getPowerDataObjectEnabledList (powerRole)

Gets all Power Data Object enables for a given power role. Equivalent of calling Pow-
erDeliveryClass::getPowerDataObjectEnabled() for all indexes. Variable to be filled with
a mapped representation of the enabled PDOs for a given power role. Values align with
a given rule index (bits 1-7, bit 0 is invalid)
Parameters
powerRole (const unsigned char) - Indicates which power role of PD
connection is in question. - Source = 1 = powerdeliveryPowerRoleSource -
Sink = 2 = powerdeliveryPowerRoleSink
Returns
Result object containing the requested value when the results error is set to
NO_ERROR(0)
Return type
Result

getPowerDataObjectList (buffer_length=65536)

Gets all Power Data Objects (PDOs). Equivalent to calling PowerDeliv-
eryClass::getPowerDataObject() on all partners, power roles, and index’s. Length
that was actually received and filled. On success this value should be 28 (7 rules * 2
partners * 2 power roles)
Parameters
buffer_length - Length of the buffer to be filed
Returns
Result object containing the requested value when the results error is set to

444 Chapter 3. API Reference

BrainStem Reference Manual, Release 2.11.1

NO_ERROR(0)
Return type
Result

getPowerRole ()

Gets the power role that is currently being advertised by the local partner. (CC Strapping).
Variable to be filed with the power role - Disabled = 0 = powerdeliveryPowerRoleDisabled
- Source = 1= powerdeliveryPowerRoleSource - Sink = 2 = powerdeliveryPowerRoleSink
- Source/Sink = 3 = powerdeliveryPowerRoleSourceSink (Dual Role Port)
Returns
Result object containing the requested value when the results error is set to
NO_ERROR(0)
Return type
Result

getPowerRolePreferred ()

Gets the preferred power role currently being advertised by the Local partner. (CC Strap-
ping). Value to be applied. - Disabled = 0 = powerdeliveryPowerRoleDisabled - Source
= 1= powerdeliveryPowerRoleSource - Sink = 2 = powerdeliveryPowerRoleSink
Returns
Result object containing the requested value when the results error is set to
NO_ERROR(0)
Return type
Result

getRequestDataObject (partner)

Gets the current Request Data Object (RDO) for a given partner. RDOs: Are provided by
the sinking device. Exist only after a successful PD negotiation (Otherwise zero). Only
one RDO can exist at a time. i.e. Either the Local or Remote partner RDO Variable to be
filled with the current RDO. Zero indicates the RDO is not active.
Parameters
partner (const unsigned char) - Indicates which side of the PD con-
nection is in question. - Local = 0 = powerdeliveryPartnerLocal - Remote = 1 =
powerdeliveryPartnerRemote
Returns
Result object containing the requested value when the results error is set to
NO_ERROR(0)
Return type
Result

packDataObjectAttributes (aitributes, partner, powerRole, ruleindex)

Helper function for packing Data Object attributes. This value is used as a subindex for
all Data Object calls with the BrainStem Protocol. aErrNone on success; aErrParam with
bad input.

Parameters

* attributes (unsigned char *) - variable to be filled with packed val-
ues.

» partner (const unsigned char) - Indicates which side of the PD con-
nection. - Local = 0 = powerdeliveryPartnerLocal - Remote = 1 = powerde-
liveryPartnerRemote

» powerRole (const unsigned char) - Indicates which power role of
PD connection. - Source = 1 = powerdeliveryPowerRoleSource - Sink =2 =
powerdeliveryPowerRoleSink

* ruleIndex (const unsigned char) - Data objectindex.

3.2,

Python API Reference 445

BrainStem Reference Manual, Release 2.11.1

Returns

An error result from the list of defined error codes in brainstem.result
Return type

unsigned byte

request (request)

Requests an action of the Remote partner. Actions are not guaranteed to occur.
The returned error represents the success of the request being sent to the partner
only. The success of the request being serviced by the remote partner can be
obtained through PowerDeliveryClass::requestStatus() Returns
ef EntityReturnValues “common entity” return values
param request
Request to be issued to the remote partner - pdRequestHardReset
(0) - pdRequestSoftReset (1) - pdRequestDataReset (2) - pdRequest-
PowerRoleSwap (3) - pdRequestPowerFastRoleSwap (4) - pdRequest-
DataRoleSwap (5) - pdRequestVconnSwap (6) - pdRequestSinkGo-
ToMinimum (7) - pdRequestRemoteSourcePowerDataObjects (8) -
pdRequestRemoteSinkPowerDataObijects (9)
type request
const unsigned char
return
An error result from the list of defined error codes in brainstem.result
rtype
unsigned byte

requestStatus ()

Gets the status of the last request command sent. Variable to be filled with the status
Returns
Result object containing the requested value when the results error is set to
NO_ERROR(0)
Return type
Result

resetEntityToFactoryDefaults ()

Resets the PowerDeliveryClass Entity to it factory default configuration.
Returns
An error result from the list of defined error codes in brainstem.result
Return type
unsigned byte

resetPowerDataObjectToDefault (powerRole, rulelndex)

Resets the Power Data Object (PDO) of the Local partner for a given power role and
index.
Parameters
* powerRole (const unsigned char) - Indicates which power role of PD
connection is in question. - Source = 1 = powerdeliveryPowerRoleSource -
Sink = 2 = powerdeliveryPowerRoleSink
* ruleIndex (const unsigned char)- Theindex of the PDO in question.
Valid index are 1-7.
Returns
An error result from the list of defined error codes in brainstem.result
Return type
unsigned byte

setFastRoleSwapCurrent (swapCurrent)

446 Chapter 3. API Reference

BrainStem Reference Manual, Release 2.11.1

Sets the Fast Role Swap Current The fast role swap current refers to the amount of current
required by the Local Sink in order to successfully preform the swap.
Parameters
swapCurrent (const unsigned char) - An enumerated value referring
to value to be set. - OA (0) - 900mA (1) - 1.5A (2) - 3A (3)
Returns
An error result from the list of defined error codes in brainstem.result
Return type
unsigned byte

setFlagMode (flag, mode)

Sets how the local partner flag/advertisement is managed. These flags are apart of the
first Local Power Data Object and must be managed in order to accurately represent the
system to other PD devices. This API allows overriding of that feature. Overriding may
lead to unexpected behaviors.
Parameters
* flag(const unsigned char) - Flag/Advertisement to be modified
* mode (const unsigned char) - Value to be applied. - Disabled (0) -
Enabled (1) - Auto (2) default
Returns
An error result from the list of defined error codes in brainstem.result
Return type
unsigned byte

setOverride (overrides)

Sets the current enabled overrides

Parameters
overrides (const unsigned int)- Overrides to be setin a bit mapped
representation.

Returns
An error result from the list of defined error codes in brainstem.result

Return type
unsigned byte

setPeakCurrentConfiguration (configuration)

Sets the Peak Current Configuration for the Local Source. The peak current configura-
tion refers to the allowable tolerance/overload capabilities in regards to the devices max
current. This tolerance includes a maximum value and a time unit.
Parameters
configuration (const unsigned char)-Anenumerated value referring
to the configuration to be set - Allowable values are 0 - 4
Returns
An error result from the list of defined error codes in brainstem.result
Return type
unsigned byte

setPowerDataObject (powerRole, rulelindex, pdo)

Sets the Power Data Object (PDO) of the local partner for a given power role and index.
Parameters

* powerRole (const unsigned char) - Indicates which power role of PD
connection is in question. - Source = 1 = powerdeliveryPowerRoleSource -
Sink = 2 = powerdeliveryPowerRoleSink

* ruleIndex (const unsigned char)- Theindex of the PDO in question.
Valid index are 1-7.

* pdo (const unsigned int)- Power Data Object to be set.

3.2,

Python API Reference

447

BrainStem Reference Manual, Release 2.11.1

Returns

An error result from the list of defined error codes in brainstem.result
Return type

unsigned byte

setPowerDataObjectEnabled (powerRole, rulelndex, enabled)

Sets the enabled state of the Local Power Data Object (PDO) for a given powerRole and
index. Enabled refers to whether the PDO will be advertised when a PD connection is
made. This does not indicate the currently active rule index. This information can be
found in Request Data Object (RDO).
Parameters
* powerRole (const unsigned char) - Indicates which power role of PD
connection is in question. - Source = 1 = powerdeliveryPowerRoleSource -
Sink = 2 = powerdeliveryPowerRoleSink
* ruleIndex (const unsigned char)- Theindexof the PDO in question.
Valid index are 1-7.
* enabled (const unsigned char) - The state to be set.
Returns
An error result from the list of defined error codes in brainstem.result
Return type
unsigned byte

setPowerRole (powerRole)

Set the current power role to be advertised by the Local partner. (CC Strapping).

Parameters
powerRole (const unsigned char) - Value to be applied. - Disabled = 0
= powerdeliveryPowerRoleDisabled - Source = 1= powerdeliveryPowerRole-
Source - Sink = 2 = powerdeliveryPowerRoleSink - Source/Sink = 3 = pow-
erdeliveryPowerRoleSourceSink (Dual Role Port)

Returns
An error result from the list of defined error codes in brainstem.result

Return type
unsigned byte

setPowerRolePreferred (powerRole)

Set the preferred power role to be advertised by the Local partner (CC Strapping).

Parameters
powerRole (const unsigned char) - Value to be applied. - Disabled =
0 = powerdeliveryPowerRoleDisabled - Source = 1= powerdeliveryPowerRole-
Source - Sink = 2 = powerdeliveryPowerRoleSink

Returns
An error result from the list of defined error codes in brainstem.result

Return type
unsigned byte

setRequestDataObject (rdo)

Sets the current Request Data Object (RDO) for a given partner. (Only the local partner
can be changed.) RDOs: Are provided by the sinking device. Exist only after a successful
PD negotiation (Otherwise zero). Only one RDO can exist at a time. i.e. Either the Local
or Remote partner RDO
Parameters
rdo (const unsigned int)- Request Data Object to be set.
Returns
An error result from the list of defined error codes in brainstem.result

448 Chapter 3. API Reference

BrainStem Reference Manual, Release 2.11.1

Return type
unsigned byte

unpackDataObjectAttributes (attributes, partner, powerRole)

Helper function for unpacking Data Object attributes. This value is used as a subindex
for all Data Object calls with the BrainStem Protocol. Data object index. aErrNone on
success; aErrParam with bad input.
Parameters
* attributes (const unsigned char) - variable to be filled with packed
values.
* partner (unsigned char *)-Indicates which side of the PD connection.
- Local = 0 = powerdeliveryPartnerLocal - Remote = 1 = powerdeliveryPart-
nerRemote
* powerRole (unsigned char *)-Indicates which power role of PD con-
nection. - Source = 1 = powerdeliveryPowerRoleSource - Sink = 2 = pow-
erdeliveryPowerRoleSink
Returns
Result object containing the requested value when the results error is set to
NO_ERROR(0)
Return type
Result

3.2.20 Rail

class brainstem.entity.Rail (module, index)

RailClass: Provides power rail functionality on certain modules. This entity is only available
on certain modules. The RailClass can be used to control power to downstream devices. It
has the ability to take current and voltage measurements, and depending on hardware, may
have additional modes and capabilities.

clearFaults ()

Clears the current fault state of the rail. Refer to the module datasheet for definition of the
rail faults.
Returns
An error result from the list of defined error codes in brainstem.result
Return type
unsigned byte

getCurrent ()

Get the rail current. The current in micro-amps (1 == 1e-6A).
Returns
Result object containing the requested value when the results error is set to
NO_ERROR(0)
Return type
Result

getCurrentLimit ()

Get the rail current limit setting. (Check product datasheet to see if this feature is avail-
able) The current in micro-amps (1 == 1e-6A).
Returns
Result object containing the requested value when the results error is set to
NO_ERROR(0)
Return type
Result

3.2. Python API Reference 449

BrainStem Reference Manual, Release 2.11.1

getCurrentSetpoint ()

Get the rail setpoint current. Rail current control capabilities vary between modules. Refer
to the module datasheet for definition of the rail current capabilities. The current in micro-
amps (1 == 1e-6A) the rail is trying to achieve. On some modules this is a measured value
so it may not exactly match what was previously set via the setCurrent interface. Refer to
the module datasheet to to determine if this is a measured or stored value.
Returns
Result object containing the requested value when the results error is set to
NO_ERROR(0)
Return type
Result

getEnable ()

Get the state of the external rail switch. Not all rails can be switched on and off. Refer to
the module datasheet for capability specification of the rails. true: enabled: connected to
the supply rail voltage; false: disabled: disconnected from the supply rail voltage
Returns
Result object containing the requested value when the results error is set to
NO_ERROR(0)
Return type
Result

getKelvinSensingEnable ()

Determine whether kelvin sensing is enabled or disabled. Refer to the module datasheet
for definition of the rail kelvin sensing capabilities. Kelvin sensing is enabled or disabled.
Returns
Result object containing the requested value when the results error is set to
NO_ERROR(0)
Return type
Result

getKelvinSensingState ()

Determine whether kelvin sensing has been disabled by the system. Refer to the module
datasheet for definition of the rail kelvin sensing capabilities. Kelvin sensing is enabled or
disabled.
Returns
Result object containing the requested value when the results error is set to
NO_ERROR(0)
Return type
Result

getOperationalMode ()

Determine the current operational mode of the system. Refer to the module datasheet for
definition of the rail operational mode capabilities. The current operational mode setting.
Returns
Result object containing the requested value when the results error is set to
NO_ERROR(0)
Return type
Result

getOperationalState ()

Determine the current operational state of the system. Refer to the module datasheet for
definition of the rail operational states. The current operational state, hardware configu-
ration, faults, and operating mode.

450 Chapter 3. API Reference

BrainStem Reference Manual, Release 2.11.1

Returns
Result object containing the requested value when the results error is set to
NO_ERROR(0)

Return type
Result

getPower ()

Get the rail supply power. Rail power control capabilities vary between modules. Refer to
the module datasheet for definition of the rail power capabilities. The power in milli-watts
(1 == 1e-3W) currently supplied by the rail. On some modules this is a measured value
so it may not exactly match what was previously set via the setPower interface. Refer to
the module datasheet to to determine if this is a measured or stored value.
Returns
Result object containing the requested value when the results error is set to
NO_ERROR(0)
Return type
Result

getPowerLimit ()

Get the rail power maximum limit setting. (Check product datasheet to see if this feature
is available) The power in milli-watts (mW).
Returns
Result object containing the requested value when the results error is set to
NO_ERROR(0)
Return type
Result

getPowerSetpoint ()

Get the rail setpoint power. Rail power control capabilities vary between modules. Refer
to the module datasheet for definition of the rail power capabilities. The power in milli-
watts (1 == 1e-3W) the rail is trying to achieve. On some modules this is a measured
value so it may not exactly match what was previously set via the setPower interface.
Refer to the module datasheet to to determine if this is a measured or stored value.
Returns
Result object containing the requested value when the results error is set to
NO_ERROR(0)
Return type
Result

getResistance ()

Get the rail load resistance. Rail resistance control capabilities vary between modules.
Refer to the module datasheet for definition of the rail resistance capabilities. The resis-
tance in milli-ohms (1 == 1e-30hms) currently drawn by the rail. On some modules this
is a measured value so it may not exactly match what was previously set via the setRe-
sistance interface. Refer to the module datasheet to to determine if this is a measured or
stored value.
Returns
Result object containing the requested value when the results error is set to
NO_ERROR(0)
Return type
Result

getResistanceSetpoint ()

Get the rail setpoint resistance. Rail resistance control capabilities vary between mod-
ules. Refer to the module datasheet for definition of the rail resistance capabilities. The

3.2,

Python API Reference

451

BrainStem Reference Manual, Release 2.11.1

resistance in milli-ohms (1 == 1e-30hms) the rail is trying to achieve. On some modules
this is a measured value so it may not exactly match what was previously set via the se-
tResistance interface. Refer to the module datasheet to to determine if this is a measured
or stored value.
Returns
Result object containing the requested value when the results error is set to
NO_ERROR(0)
Return type
Result

getTemperature ()

Get the rail temperature. The measured temperature associated with the rail in micro-
Celsius (1 == 1e-6°C). The temperature may be associated with the module’s internal rail
circuitry or an externally connected temperature sensors. Refer to the module datasheet
for definition of the temperature measurement location and specific capabilities.
Returns
Result object containing the requested value when the results error is set to
NO_ERROR(0)
Return type
Result

getVoltage ()

Get the rail supply voltage. Rail voltage control capabilities vary between modules. Refer
to the module datasheet for definition of the rail voltage capabilities. The voltage in micro-
volts (1 == 1e-6V) currently supplied by the rail. On some modules this is a measured
value so it may not exactly match what was previously set via the setVoltage interface.
Refer to the module datasheet to to determine if this is a measured or stored value.
Returns
Result object containing the requested value when the results error is set to
NO_ERROR(0)
Return type
Result

getVoltageMaxLimit ()

Get the rail voltage maximum limit setting. (Check product datasheet to see if this feature
is available) The voltage in micro-volts (1 == 1e-6V).
Returns
Result object containing the requested value when the results error is set to
NO_ERROR(0)
Return type
Result

getVoltageMinLimit ()

Get the rail voltage minimum limit setting. (Check product datasheet to see if this feature
is available) The voltage in micro-volts (1 == 1e-6V).
Returns
Result object containing the requested value when the results error is set to
NO_ERROR(0)
Return type
Result

getVoltageSetpoint ()

Getthe rail setpoint voltage. Rail voltage control capabilities vary between modules. Refer
to the module datasheet for definition of the rail voltage capabilities. The voltage in micro-
volts (1 == 1e-6V) the rail is trying to achieve. On some modules this is a measured value

452 Chapter 3. API Reference

BrainStem Reference Manual, Release 2.11.1

so it may not exactly match what was previously set via the setVoltage interface. Refer to
the module datasheet to to determine if this is a measured or stored value.
Returns
Result object containing the requested value when the results error is set to
NO_ERROR(0)
Return type
Result

setCurrentLimit (microamps)
Settherail current limit setting. (Check product datasheet to see if this feature is available)

Parameters
microamps (const int)- The currentin micro-amps (1 == 1e-6A).

Returns
An error result from the list of defined error codes in brainstem.result

Return type
unsigned byte

setCurrentSetpoint (microamps)

Set the rail supply current. Rail current control capabilities vary between modules. Refer
to the module datasheet for definition of the rail current capabilities.
Parameters
microamps (const int) - The current in micro-amps (1 == 1e-6A) to be
supply by the rail.
Returns
An error result from the list of defined error codes in brainstem.result
Return type
unsigned byte

setEnable (bEnable)

Set the state of the external rail switch. Not all rails can be switched on and off. Refer to
the module datasheet for capability specification of the rails.
Parameters
bEnable (const unsigned char) - true: enable and connect to the supply
rail voltage; false: disable and disconnect from the supply rail voltage
Returns
An error result from the list of defined error codes in brainstem.result
Return type
unsigned byte

setKelvinSensingEnable (bEnable)

Enable or Disable kelvin sensing on the module. Refer to the module datasheet for defi-
nition of the rail kelvin sensing capabilities.
Parameters
bEnable (const unsigned char) - enable or disable kelvin sensing.
Returns
An error result from the list of defined error codes in brainstem.result
Return type
unsigned byte

setOperationalMode (mode)

Set the operational mode of the rail. Refer to the module datasheet for definition of the rail
operational capabilities.
Parameters
mode (const unsigned char) - The operational mode to employ.
Returns
An error result from the list of defined error codes in brainstem.result

3.2,

Python API Reference 453

BrainStem Reference Manual, Release 2.11.1

Return type
unsigned byte

setPowerLimit (milliwatts)

Set the rail power maximum limit setting. (Check product datasheet to see if this feature
is available)
Parameters
milliwatts (const int) - The power in milli-watts (mW).
Returns
An error result from the list of defined error codes in brainstem.result
Return type
unsigned byte

setPowerSetpoint (milliwatts)

Set the rail supply power. Rail power control capabilities vary between modules. Refer to
the module datasheet for definition of the rail power capabilities.
Parameters
milliwatts (const int) - The power in milli-watts (1 == 1e-3W) to be
supplied by the rail.
Returns
An error result from the list of defined error codes in brainstem.result
Return type
unsigned byte

setResistanceSetpoint (milliohms)

Set the rail load resistance. Rail resistance control capabilities vary between modules.
Refer to the module datasheet for definition of the rail resistance capabilities.
Parameters
milliohms (const int)- The resistance in milli-ohms (1 == 1e-30hms) to
be drawn by the rail.
Returns
An error result from the list of defined error codes in brainstem.result
Return type
unsigned byte

setVoltageMaxLimit (microvolts)

Set the rail voltage maximum limit setting. (Check product datasheet to see if this feature
is available)
Parameters
microvolts (const int)- The voltage in micro-volts (1 == 1e-6V).
Returns
An error result from the list of defined error codes in brainstem.result
Return type
unsigned byte

setVoltageMinLimit (microvolts)

Set the rail voltage minimum limit setting. (Check product datasheet to see if this feature
is available)
Parameters
microvolts (const int)- The voltage in micro-volts (1 == 1e-6V).
Returns
An error result from the list of defined error codes in brainstem.result
Return type
unsigned byte

454 Chapter 3. API Reference

BrainStem Reference Manual, Release 2.11.1

setVoltageSetpoint (microvolts)

Set the rail supply voltage. Rail voltage control capabilities vary between modules. Refer
to the module datasheet for definition of the rail voltage capabilities.
Parameters
microvolts (const int) - The voltage in micro-volts (1 == 1e-6V) to be
supplied by the rail.
Returns
An error result from the list of defined error codes in brainstem.result
Return type
unsigned byte

3.2.21 RCServo

class brainstem.entity.RCServo (module, index)

RCServoClass: Interface to servo entities on BrainStem modules. Servo entities are built
upon the digital input/output pins and therefore can also be inputs or outputs. Please see the
product datasheet on the configuration limitations.

getEnable ()

Get the enable status of the servo channel. The current enable status of the servo entity.
0 is disabled, 1 is enabled.
Returns
Result object containing the requested value when the results error is set to
NO_ERROR(0)
Return type
Result

getPosition ()

Get the position of the servo channel The current position of the servo channel. Default
64 = a 1ms pulse and 192 = a 2ms pulse.
Returns
Result object containing the requested value when the results error is set to
NO_ERROR(0)
Return type
Result

getReverse ()

Get the reverse status of the servo channel The current reverse status of the servo entity.
0 = not reversed, 1 = reversed.
Returns
Result object containing the requested value when the results error is set to
NO_ERROR(0)
Return type
Result

setEnable (enable)

Enable the servo channel

Parameters
enable (const unsigned char) - The state to be set. 0 is disabled, 1 is
enabled.

Returns
An error result from the list of defined error codes in brainstem.result

Return type
unsigned byte

3.2. Python API Reference

455

BrainStem Reference Manual, Release 2.11.1

setPosition (position)

Set the position of the servo channel

Parameters
position (const unsigned char) - The position to be set. Default 64 =
a 1ms pulse and 192 = a 2ms pulse.

Returns
An error result from the list of defined error codes in brainstem.result

Return type
unsigned byte

setReverse (reverse)

Set the output to be reversed on the servo channel

Parameters
reverse (const unsigned char) - Reverses the value set by “setPosi-
tion”. ie. if the position is set to 64 (1ms pulse) the output will now be 192 (2ms
pulse); however, “getPostion” will return the set value of 64. 0 = not reversed,
1 =reversed.

Returns
An error result from the list of defined error codes in brainstem.result

Return type
unsigned byte

3.2.22 Relay

class brainstem.entity.Relay (module, index)

RelayClass: Interface to relay entities on BrainStem modules. Relay entities can be set, and
the voltage read. Other capabilities may be available, please see the product datasheet.

getEnable ()

Get the state. False or 0 = Disabled, True or 1 = Enabled
Returns
Result object containing the requested value when the results error is set to
NO_ERROR(0)
Return type
Result

getVoltage ()

Get the scaled micro volt value with reference to ground. 32 bit signed integer (in micro
Volts) based on the boards ground and reference voltages. Note: Not all modules provide
32 bits of accuracy; Refer to the module’s datasheet to determine the analog bit depth and
reference voltage.
Returns
Result object containing the requested value when the results error is set to
NO_ERROR(0)
Return type
Result

setEnable (bEnable)

Set the enable/disable state.
Parameters
bEnable (const unsigned char) - False or 0 = Disabled, True or 1 =
Enabled
Returns
An error result from the list of defined error codes in brainstem.result

456 Chapter 3. API Reference

BrainStem Reference Manual, Release 2.11.1

Return type
unsigned byte

3.2.23 Results

A module that provides a result class for returning results of UEI commands.

Results consist of an error attribute and a value attribute. If the error attribute is set to NO_ERROR, then the
result value is the response to the UEI command that was sent.

For more information about return values for commands and UEI's see the Acroname BrainStem Reference®’

class brainstem.result.Result (error, value)
Result class for returning results of commands

Instances of Result represent the response to a command. The Result class also contains constants
representing the possible errors that may be encountered during interaction with a BrainStem module.

property error
Return the error attribute

static getErrorDescription (error, buffer_length=256)
Get the description of an error code.

Parameters
error (int or Result object)- The errorto decode.

Returns
The error code in human readable form.

Return type
string

static getErrorText (error)
Get the string representation of an error code.

Parameters
error (int or Result object)- The error to decode.

Returns
The error code in human readable form.

Return type
string

property value
Return the value attribute

91 https://acroname.com/reference

3.2. Python API Reference 457

https://acroname.com/reference

BrainStem Reference Manual, Release 2.11.1

3.2.24 Signal

See the Signal Entity for generic information.

class brainstem.entity.Signal (module, index)

SignalClass: Interface to digital pins configured to produce square wave signals. This class is
designed to allow for square waves at various frequencies and duty cycles. Control is defined
by specifying the wave period as (T3Time) and the active portion of the cycle as (T2Time).
See the entity overview section of the reference for more detail regarding the timing.

getEnable ()

Get the Enable/Disable of the signal. True to enable, false to disable
Returns
Result object containing the requested value when the results error is set to
NO_ERROR(0)
Return type
Result

getInvert ()

Get the invert status the signal output. Normal mode is High on t0 then low at t2. Inverted
mode is Low at t0 on period start and high at t2. to invert, false for normal mode.
Returns
Result object containing the requested value when the results error is set to
NO_ERROR(0)
Return type
Result

getT2Time ()

Get the signal active period or T2 in nanoseconds. Integer not larger than unsigned 32
bit max value representing the wave active period in nanoseconds.
Returns
Result object containing the requested value when the results error is set to
NO_ERROR(0)
Return type
Result

getT3Time ()

Get the signal period or T3 in nanoseconds. Integer not larger than unsigned 32 bit max
value representing the wave period in nanoseconds.
Returns
Result object containing the requested value when the results error is set to
NO_ERROR(0)
Return type
Result

setEnable (enable)

Enable/Disable the signal output.
Parameters
enable (const unsigned char) - True to enable, false to disable
Returns
An error result from the list of defined error codes in brainstem.result
Return type
unsigned byte

458 Chapter 3. API Reference

BrainStem Reference Manual, Release 2.11.1

setInvert (invert)

Invert the signal output. Normal mode is High on t0 then low at t2. Inverted mode is Low
at t0 on period start and high at t2.
Parameters
invert (const unsigned char) - toinvert, false for normal mode.
Returns
An error result from the list of defined error codes in brainstem.result
Return type
unsigned byte

setT2Time (I{2_nsec)

Set the signal active period or T2 in nanoseconds.

Parameters
t2_nsec (const unsigned int) - Integer not larger than unsigned 32 bit
max value representing the wave active period in nanoseconds.

Returns
An error result from the list of defined error codes in brainstem.result

Return type
unsigned byte

setT3Time (I3 _nsec)

Set the signal period or T3 in nanoseconds.

Parameters
t3_nsec (const unsigned int) - Integer notlarger than unsigned 32 bit
max value representing the wave period in nanoseconds.

Returns
An error result from the list of defined error codes in brainstem.result

Return type
unsigned byte

3.2.25 System

class brainstem.entity.System (module, index)

SystemClass: The System class provides access to the core settings, configuration and sys-
tem information of the BrainStem module. The class provides access to the model type, serial
number and other static information as well as the ability to set boot reflexes, toggle the user
LED, as well as affect module and router addresses etc.

getBootSlot ()

Get the store slot which is mapped when the module boots. The slot number in aS-
TORE_INTERNAL that is mapped after the module boots.
Returns
Result object containing the requested value when the results error is set to
NO_ERROR(0)
Return type
Result

getBuild ()

Get the modules firmware build number The build number is a unique hash assigned to a
specific firmware. Variable to be filled with build.
Returns
Result object containing the requested value when the results error is set to
NO_ERROR(0)

3.2. Python API Reference 459

BrainStem Reference Manual, Release 2.11.1

Return type
Result

getErrors ()

Gets any system level errors. Calling this function will clear the current errors. If the error
persists it will be set again. Bit mapped field representing the devices errors
Returns
Result object containing the requested value when the results error is set to
NO_ERROR(0)
Return type
Result

getHBInterval ()

Get the delay between heartbeat packets which are sent from the module. For link mod-
ules, these these heartbeat are sent to the host. For non-link modules, these heartbeats
are sent to the router address. Interval values are in 25.6 millisecond increments. The
current heartbeat delay.
Returns
Result object containing the requested value when the results error is set to
NO_ERROR(0)
Return type
Result

getHardwareVersion ()

Get the module’s hardware revision information. The content of the hardware version is
specific to each Acroname product and used to indicate behavioral differences between
product revisions. The codes are not well defined and may change at any time. The
module’s hardware version information.
Returns
Result object containing the requested value when the results error is set to
NO_ERROR(0)
Return type
Result

getInputCurrent ()

Get the module’s input current. The module’s input current reported in microamps.
Returns
Result object containing the requested value when the results error is set to
NO_ERROR(0)
Return type
Result

getInputPowerBehavior ()

Gets the systems input power behavior. This behavior refers to where the device sources
its power from and what happens if that power source goes away. Variable to be filled
with an enumerated value representing behavior.
Returns
Result object containing the requested value when the results error is set to
NO_ERROR(0)
Return type
Result

getInputPowerBehaviorConfig (buffer_length=65536)

Gets the input power behavior configuration Certain behaviors use a list of ports to deter-
mine priority when budgeting power. Length that was actually received and filled.

460 Chapter 3. API Reference

BrainStem Reference Manual, Release 2.11.1

Parameters
buffer_length - Length of the buffer to be filed
Returns
Result object containing the requested value when the results error is set to
NO_ERROR(0)
Return type
Result

getInputPowerSource ()

Provides the source of the current power source in use. Variable to be filled with enumer-
ated representation of the source.
Returns
Result object containing the requested value when the results error is set to
NO_ERROR(0)
Return type
Result

getInputVoltage ()

Get the module’s input voltage. The module’s input voltage reported in microvolts.
Returns
Result object containing the requested value when the results error is set to
NO_ERROR(0)
Return type
Result

getLED ()

Get the system LED state. Most modules have a blue system LED. Refer to the module
datasheet for details on the system LED location and color. true: LED on, false: LED off.
Returns
Result object containing the requested value when the results error is set to
NO_ERROR(0)
Return type
Result

getLEDMaxBrightness ()

Gets the scaling factor for the brightness of all LEDs on the system. The brightness is set
to the ratio of this value compared to 255 (maximum). Brightness value relative to 255
Returns
Result object containing the requested value when the results error is set to
NO_ERROR(0)
Return type
Result

getLinkInterface ()

Gets the link interface configuration. This refers to which interface is being used for control
by the device. Variable to be filled with an enumerated value representing interface. - 0 =
Auto= systemLinkAuto - 1 = Control Port = systemLinkUSBControl - 2 = Hub Upstream
Port = systemLinkUSBHub
Returns
Result object containing the requested value when the results error is set to
NO_ERROR(0)
Return type
Result

getMaximumTemperature ()
Get the module’s maximum temperature ever recorded in micro-C (uC) This value will

3.2. Python API Reference 461

BrainStem Reference Manual, Release 2.11.1

persists through a power cycle. The module’s maximum system temperature in micro-C
Returns
Result object containing the requested value when the results error is set to
NO_ERROR(0)
Return type
Result

getMinimumTemperature ()

Get the module’s minimum temperature ever recorded in micro-C (uC) This value will
persists through a power cycle. The module’s minimum system temperature in micro-C
Returns
Result object containing the requested value when the results error is set to
NO_ERROR(0)
Return type
Result

getModel ()

Get the module’s model enumeration. A subset of the possible model enumerations is
defined in BrainStem.h under “BrainStem model codes”. Other codes are be used by
Acroname for proprietary module types. The module’s model enumeration.
Returns
Result object containing the requested value when the results error is set to
NO_ERROR(0)
Return type
Result

getModule ()

Get the current address the module uses on the BrainStem network. The address the
module is using on the BrainStem network.
Returns
Result object containing the requested value when the results error is set to
NO_ERROR(0)
Return type
Result

getModuleBaseAddress ()

Get the base address of the module. Software offsets and hardware offsets are added to
this base address to produce the effective module address. The address the module is
using on the BrainStem network.
Returns
Result object containing the requested value when the results error is set to
NO_ERROR(0)
Return type
Result

getModuleHardwareOffset ()

Get the module hardware address offset. This is added to the base address to allow
the module address to be configured in hardware. Not all modules support the hardware
module address offset. Refer to the module datasheet. The module address offset.
Returns
Result object containing the requested value when the results error is set to
NO_ERROR(0)
Return type
Result

462 Chapter 3. API Reference

BrainStem Reference Manual, Release 2.11.1

getModuleSoftwareOffset ()

Get the software address offset. This software offset is added to the module base ad-
dress, and potentially a module hardware address to produce the final module address.
You must save the system settings and restart for this to take effect. Please review the
BrainStem network fundamentals before modifying the module address. The address for
the module. Value must be even from 0-254.
Returns
Result object containing the requested value when the results error is set to
NO_ERROR(0)
Return type
Result

getName (buffer_length=65536)

Gets a user defined name of the device. Helpful for identifying ports/devices in a static
environment. Length that was actually received and filled.
Parameters
buffer_length - Length of the buffer to be filed
Returns
Result object containing the requested value when the results error is set to
NO_ERROR(0)
Return type
Result

getPowerLimit ()

Reports the amount of power the system has access to and thus how much power can be
budgeted to sinking devices. The available power in milli-Watts (mW, 1 t)
Returns
Result object containing the requested value when the results error is set to
NO_ERROR(0)
Return type
Result

getPowerLimitMax ()

Gets the user defined maximum power limit for the system. Provides mechanism for defin-
ing an unregulated power supplies capability. Variable to be filled with the power limit in
milli-Watts (mW)
Returns
Result object containing the requested value when the results error is set to
NO_ERROR(0)
Return type
Result

getPowerLimitState ()

Gets a bit mapped representation of the factors contributing to the power limit. Active limit
can be found through PowerDeliverClass::getPowerLimit(). Variable to be filled with the
state.
Returns
Result object containing the requested value when the results error is set to
NO_ERROR(0)
Return type
Result

getRouter ()

Get the router address the module uses to communicate with the host and heartbeat to in
order to establish the BrainStem network. The address.

3.2,

Python API Reference

463

BrainStem Reference Manual, Release 2.11.1

Returns
Result object containing the requested value when the results error is set to
NO_ERROR(0)

Return type
Result

getRouterAddressSetting ()

Get the router address system setting. This setting may not be the same as the current
router address if the router setting was set and saved but no reset has occurred. Please
review the BrainStem network fundamentals before modifying the module address. The
address for the module. Value must be even from 0-254.
Returns
Result object containing the requested value when the results error is set to
NO_ERROR(0)
Return type
Result

getSerialNumber ()

Get the module’s serial number. The serial number is a unique 32bit integer which is
usually communicated in hexadecimal format. The module’s serial number.
Returns
Result object containing the requested value when the results error is set to
NO_ERROR(0)
Return type
Result

getTemperature ()

Get the module’s current temperature in micro-C The module’s system temperature in
micro-C
Returns
Result object containing the requested value when the results error is set to
NO_ERROR(0)
Return type
Result

getUnregulatedCurrent ()

Gets the current passing through the unregulated port. Variable to be filled with the current
in micro-Amps (uA).
Returns
Result object containing the requested value when the results error is set to
NO_ERROR(0)
Return type
Result

getUnregulatedVoltage ()

Gets the voltage present at the unregulated port. Variable to be filled with the voltage in
micro-Volts (uV).
Returns
Result object containing the requested value when the results error is set to
NO_ERROR(0)
Return type
Result

getUptime ()

Get the module’s accumulated uptime in minutes The module’s accumulated uptime in
minutes.

464 Chapter 3. API Reference

BrainStem Reference Manual, Release 2.11.1

Returns
Result object containing the requested value when the results error is set to
NO_ERROR(0)

Return type
Result

getVersion ()

Get the modules firmware version number. The version number is packed into the return
value. Ultility functions in the aVersion module can unpack the major, minor and patch
numbers from the version number which looks like M.m.p. The build version date code.
Returns
Result object containing the requested value when the results error is set to
NO_ERROR(0)
Return type
Result

logEvents ()

Saves system log events to a slot defined by the module (usually ram slot 0).
Returns
An error result from the list of defined error codes in brainstem.result
Return type
unsigned byte

reset ()
Reset the system. aErrTimeout indicates a successful reset, as the system resets im-
mediately, which tears down the USB-link immediately, thus preventing an affirmative
response.
Returns
An error result from the list of defined error codes in brainstem.result
Return type
unsigned byte

resetDeviceToFactoryDefaults ()

Resets the device to it factory default configuration.
Returns
An error result from the list of defined error codes in brainstem.result
Return type
unsigned byte

resetEntityToFactoryDefaults ()

Resets the SystemClass Entity to it factory default configuration.
Returns
An error result from the list of defined error codes in brainstem.result
Return type
unsigned byte

routeToMe (bOn)

Enables/Disables the route to me function. This function allows for easy networking of
BrainStem modules. Enabling (1) this function will send an I2C General Call to all devices
on the network and request that they change their router address to the of the calling
device. Disabling (0) will cause all devices on the BrainStem network to revert to their
default address.
Parameters
bOn (const unsigned char) - Enable or disable of the route to me function
1 = enable.

3.2,

Python API Reference

465

BrainStem Reference Manual, Release 2.11.1

Returns

An error result from the list of defined error codes in brainstem.result
Return type

unsigned byte

save ()
Save the system operating parameters to the persistent module flash memory. Operating
parameters stored in the system flash will be loaded after the module reboots. Operating
parameters include: heartbeat interval, module address, module router address
Returns
An error result from the list of defined error codes in brainstem.result
Return type
unsigned byte

setBootSlot (slot)
Set a store slot to be mapped when the module boots. The boot slot will be mapped after
the module boots from powers up, receives a reset signal on its reset input, or is issued a
software reset command. Set the slot to 255 to disable mapping on boot.

Parameters
slot (const unsigned char) - The slot numberin aSTORE_INTERNAL

to be marked as a boot slot.
Returns

An error result from the list of defined error codes in brainstem.result
Return type

unsigned byte

setHBInterval (interval)
Set the delay between heartbeat packets which are sent from the module. For link mod-
ules, these these heartbeat are sent to the host. For non-link modules, these heartbeats
are sent to the router address. Interval values are in 25.6 millisecond increments Valid
values are 1-255; default is 10 (256 milliseconds).
Parameters
interval (const unsigned char) - The desired heartbeat delay.
Returns
An error result from the list of defined error codes in brainstem.result
Return type
unsigned byte

setInputPowerBehavior (behavior)
Sets the systems input power behavior. This behavior refers to where the device sources
its power from and what happens if that power source goes away.

Parameters
behavior (const unsigned char) - An enumerated representation of

behavior to be set.
Returns
An error result from the list of defined error codes in brainstem.result

Return type
unsigned byte

setInputPowerBehaviorConfig (buffer)
Sets the input power behavior configuration Certain behaviors use a list of ports to deter-
mine priority when budgeting power.

Returns
An error result from the list of defined error codes in brainstem.result

Return type
unsigned byte

466 Chapter 3. API Reference

BrainStem Reference Manual, Release 2.11.1

setLED (bOn)

Set the system LED state. Most modules have a blue system LED. Refer to the module
datasheet for details on the system LED location and color.
Parameters
bOn (const unsigned char) - true: turn the LED on, false: turn LED off.
Returns
An error result from the list of defined error codes in brainstem.result
Return type
unsigned byte

setLEDMaxBrightness (brightness)

Sets the scaling factor for the brightness of all LEDs on the system. The brightness is
set to the ratio of this value compared to 255 (maximum). The colors of each LED may
be inconsistent at low brightness levels. Note that if the brightness is set to zero and the
settings are saved, then the LEDs will no longer indicate whether the system is powered
on. When troubleshooting, the user configuration may need to be manually reset in order
to view the LEDs again.
Parameters
brightness (const unsigned char) - Brightness value relative to 255
Returns
An error result from the list of defined error codes in brainstem.result
Return type
unsigned byte

setLinkInterface (l/inkinterface)

Sets the link interface configuration. This refers to which interface is being used for control
by the device.
Parameters
linkInterface (const unsigned char) - An enumerated representa-
tion of interface to be set. - 0 = Auto= systemLinkAuto - 1 = Control Port =
systemLinkUSBControl - 2 = Hub Upstream Port = systemLinkUSBHub
Returns
An error result from the list of defined error codes in brainstem.result
Return type
unsigned byte

setModuleSoftwareOffset (address)

Set the software address offset. This software offset is added to the module base ad-
dress, and potentially a module hardware address to produce the final module address.
You must save the system settings and restart for this to take effect. Please review the
BrainStem network fundamentals before modifying the module address.
Parameters
address (const unsigned char) - The address for the module. Value
must be even from 0-254.
Returns
An error result from the list of defined error codes in brainstem.result
Return type
unsigned byte

setName (buffer)

Sets a user defined name for the device. Helpful for identification when multiple devices
of the same type are present in a system.
Returns
An error result from the list of defined error codes in brainstem.result

3.2,

Python API Reference 467

BrainStem Reference Manual, Release 2.11.1

Return type
unsigned byte

setPowerLimitMax (power)

Sets a user defined maximum power limit for the system. Provides mechanism for defining
an unregulated power supplies capability.
Parameters
power (const unsigned int) - Limitin milli-Watts (mW) to be set.
Returns
An error result from the list of defined error codes in brainstem.result
Return type
unsigned byte

setRouter (address)

Set the router address the module uses to communicate with the host and heartbeat to in
order to establish the BrainStem network. This setting must be saved and the board reset
before the setting becomes active. Warning: changing the router address may cause the
module to “drop off” the BrainStem network if the new router address is not in use by a
BrainStem module. Please review the BrainStem network fundamentals before modifying
the router address.
Parameters
address (const unsigned char)- The router address to be used.
Returns
An error result from the list of defined error codes in brainstem.result
Return type
unsigned byte

3.2.26 Store

class brainstem.entity.Store (module, index)

StoreClass: The store provides a flat file system on modules that have storage capacity. Files
are referred to as slots and they have simple zero-based numbers for access. Store slots can
be used for generalized storage and commonly contain compiled reflex code (files ending in
.map) or templates used by the system. Slots simply contain bytes with no expected organi-
zation but the code or use of the slot may impose a structure. Stores have fixed indices based
on type. Not every module contains a store of each type. Consult the module datasheet for
details on which specific stores are implemented, if any, and the capacities of implemented
stores.

getSlotCapacity (Sslot)

Get the slot capacity. Returns the Capacity of the slot, i.e. The number of bytes it can
hold. The slot capacity.
Parameters
slot (const unsigned char) - The slot number.
Returns
Result object containing the requested value when the results error is set to
NO_ERROR(0)
Return type
Result

getSlotLocked (s/ot)

Gets the current lock state of the slot Allows for write protection on a slot. Variable to be
filed with the locked state.

468 Chapter 3. API Reference

BrainStem Reference Manual, Release 2.11.1

Parameters
slot (const unsigned char) - The slot number
Returns
Result object containing the requested value when the results error is set to
NO_ERROR(0)
Return type
Result

getSlotSize (slot)
Get the slot size. The slot size represents the size of the data currently filling the slot in
bytes. The slot size.
Parameters
slot (const unsigned char) - The slot number.
Returns
Result object containing the requested value when the results error is set to
NO_ERROR(0)
Return type
Result

getSlotState (slot)

Get slot state. true: enabled, false: disabled.

Parameters
slot (const unsigned char) - The slot number.

Returns
Result object containing the requested value when the results error is set to
NO_ERROR(0)

Return type
Result

loadSlot (Sslot, buffer)

Load the slot.
Parameters
slot (const unsigned char) - The slot number.
Returns
An error result from the list of defined error codes in brainstem.result
Return type
unsigned byte

setSlotLocked (slot, lock)

Sets the locked state of the slot Allows for write protection on a slot.

Parameters

* slot (const unsigned char)- The slot number

* lock (const unsigned char) - state to be set.
Returns

An error result from the list of defined error codes in brainstem.result
Return type

unsigned byte

slotDisable (Slot)

Disable slot.
Parameters
slot (const unsigned char) - The slot number.
Returns
An error result from the list of defined error codes in brainstem.result
Return type
unsigned byte

3.2,

Python API Reference 469

BrainStem Reference Manual, Release 2.11.1

slotEnable (slot)

Enable slot.
Parameters
slot (const unsigned char) - The slot number.
Returns
An error result from the list of defined error codes in brainstem.result
Return type
unsigned byte

unloadSlot (slot, buffer_length=65536)

Unload the slot data. Length of data that was unloaded. Unloaded length will never be
larger than dataLength.
Parameters
* slot (const unsigned char) - The slot number.
* buffer_length -
— The length of pData buffer in bytes. This is the maximum number of bytes
that should be unloaded.
Returns
Result object containing the requested value when the results error is set to
NO_ERROR(0)
Return type
Result

3.2.27 Temperature

class brainstem.entity.Temperature (module, index)

TemperatureClass: This entity is only available on certain modules, and provides a tempera-
ture reading in microcelsius.

getValue ()

Get the modules temperature in micro-C The temperature in micro-Celsius (1 == 1e-6C).
Returns
Result object containing the requested value when the results error is set to
NO_ERROR(0)
Return type
Result

getValueMax ()

Get the module’s maximum temperature in micro-C since the last power cycle. The mod-
ule’s maximum temperature in micro-C
Returns
Result object containing the requested value when the results error is set to
NO_ERROR(0)
Return type
Result

getValueMin ()

Get the module’s minimum temperature in micro-C since the last power cycle. The mod-
ule’s minimum temperature in micro-C
Returns
Result object containing the requested value when the results error is set to
NO_ERROR(0)
Return type
Result

470 Chapter 3. API Reference

BrainStem Reference Manual, Release 2.11.1

resetEntityToFactoryDefaults ()

Resets the TemperatureClass Entity to it factory default configuration.
Returns
An error result from the list of defined error codes in brainstem.result
Return type
unsigned byte

3.2.28 Timer

class brainstem.entity.Timer (module, index)

TimerClass: The Timer Class provides access to a simple scheduler. The timer can set to fire
only once, or to repeat at a certain interval. Additionally, a timer entity can execute custom
Reflex routines upon firing.

getExpiration ()

Get the currently set expiration time in microseconds. This is not a “live” timer. That is, it
shows the expiration time originally set with setExpiration; it does not “tick down” to show
the time remaining before expiration. The timer expiration duration in microseconds.
Returns
Result object containing the requested value when the results error is set to
NO_ERROR(0)
Return type
Result

getMode ()

Get the mode of the timer which is either single or repeat mode. The mode of the time.
aTIMER_MODE_REPEAT or aTIMER_MODE_SINGLE.
Returns
Result object containing the requested value when the results error is set to
NO_ERROR(0)
Return type
Result

setExpiration (usecDuration)

Set the expiration time for the timer entity. When the timer expires, it will fire the associated
timer[index]() reflex.
Parameters
usecDuration (const unsigned int)- The duration before timer expi-
ration in microseconds.
Returns
An error result from the list of defined error codes in brainstem.result
Return type
unsigned byte

setMode (mode)

Set the mode of the timer which is either single or repeat mode. aErrNone Action com-
pleted successfully.

Parameters
mode (const unsigned char) - The mode of the timer.
aTIMER_MODE_REPEAT or aTIMER_MODE_SINGLE.

Returns
An error result from the list of defined error codes in brainstem.result

Return type

unsigned byte

3.2. Python API Reference 471

BrainStem Reference Manual, Release 2.11.1

3.2.29 UART

class brainstem.entity.UART (module, index)

UART Class: A UART is a “Universal Asynchronous Receiver/Transmitter. Many times re-
ferred to as a COM (communication), Serial, or TTY (teletypewriter) port.

The UART Class allows the enabling and disabling of the UART data lines.

getBaudRate ()

Get the UART baud rate. Pointer variable to be filled with baud rate.
Returns
Result object containing the requested value when the results error is set to
NO_ERROR(0)
Return type
Result

getEnable ()

Get the enabled state of the uart. true: enabled, false: disabled.
Returns
Result object containing the requested value when the results error is set to
NO_ERROR(0)
Return type
Result

getProtocol ()

Get the UART protocol. Pointer to where result is placed.
Returns
Result object containing the requested value when the results error is set to
NO_ERROR(0)
Return type
Result

setBaudRate (rate)

Set the UART baud rate.
Parameters
rate (const unsigned int)-baud rate.
Returns
An error result from the list of defined error codes in brainstem.result
Return type
unsigned byte

setEnable (bEnabled)

Enable the UART channel.
Parameters
bEnabled (const unsigned char) - true: enabled, false: disabled.
Returns
An error result from the list of defined error codes in brainstem.result
Return type
unsigned byte

setProtocol (protocol)

Set the UART protocol.
Parameters
protocol (const unsigned char)- Anenumeration of serial protocols.
Returns
An error result from the list of defined error codes in brainstem.result

472 Chapter 3. API Reference

BrainStem Reference Manual, Release 2.11.1

Return type
unsigned byte

3.2.30 USB

class brainstem.entity.USB (module, index)

USBClass: The USB class provides methods to interact with a USB hub and USB switches.
Different USB hub products have varying support; check the datasheet to understand the
capabilities of each product.

clearPortErrorStatus (channel)

Clear the error status for the given port.
Parameters
channel (const unsigned char)- The portto clear error status for.
Returns
An error result from the list of defined error codes in brainstem.result
Return type
unsigned byte

getAltModeConfig (channel)

Get USB Alt Mode Configuration. The USB configuration for the given channel.
Parameters
channel (const unsigned char)- The USB sub channel
Returns
Result object containing the requested value when the results error is set to
NO_ERROR(0)
Return type
Result

getCClCurrent (channel)

Get the current through the CC1 for a port. The USB channel current in micro-amps (1
== 1e-6A).
Parameters
channel (const unsigned char)- The USB sub channel.
Returns
Result object containing the requested value when the results error is set to
NO_ERROR(0)
Return type
Result

getCClEnable (channel)

Get Enable/Disable on the CC1 line. State to be filled - Disabled: 0 - Enabled: 1
Parameters
channel (const unsigned char)- USB channel.
Returns
Result object containing the requested value when the results error is set to
NO_ERROR(0)
Return type
Result

getCClVoltage (channel)

Get the voltage of CC1 for a port. The USB channel voltage in micro-volts (1 == 1e-6V).
Parameters
channel (const unsigned char)- The USB sub channel.

3.2. Python API Reference 473

BrainStem Reference Manual, Release 2.11.1

Returns
Result object containing the requested value when the results error is set to
NO_ERROR(0)

Return type
Result

getCC2Current (channel)

Get the current through the CC2 for a port. The USB channel current in micro-amps (1
== 1e-6A).
Parameters
channel (const unsigned char)- The USB sub channel.
Returns
Result object containing the requested value when the results error is set to
NO_ERROR(0)
Return type
Result

getCC2Enable (channel)

Get Enable/Disable on the CC1 line. - State to be filled - Disabled: 0 - Enabled: 1
Parameters
channel (const unsigned char)-
+ USB channel.
Returns
Result object containing the requested value when the results error is set to
NO_ERROR(0)
Return type
Result

getCC2Voltage (channel)

Get the voltage of CC2 for a port. The USB channel voltage in micro-volts (1 == 1e-6V).
Parameters
channel (const unsigned char)- The USB sub channel.
Returns
Result object containing the requested value when the results error is set to
NO_ERROR(0)
Return type
Result

getCableFlip (channel)

Get Cable flip setting. The enable/disable status of cable flip.

Parameters
channel (const unsigned char)- The USB sub channel.

Returns
Result object containing the requested value when the results error is set to
NO_ERROR(0)

Return type
Result

getConnectMode (channel)

Gets the connect mode of the switch. The current connect mode
Parameters
channel (const unsigned char)- The USB sub channel.
Returns
Result object containing the requested value when the results error is set to
NO_ERROR(0)

474 Chapter 3. API Reference

BrainStem Reference Manual, Release 2.11.1

Return type
Result

getDownstreamBoostMode ()

Get the downstream boost mode. Possible modes are 0 - no boost, 1 - 4% boost, 2 - 8%
boost, 3 - 12% boost. The current Downstream boost setting 0, 1, 2, or 3.
Returns
Result object containing the requested value when the results error is set to
NO_ERROR(0)
Return type
Result

getDownstreamDataSpeed (channel)

Get the current data transfer speed for the downstream port. The data speed can be Hi-
Speed (2.0) or SuperSpeed (3.0) depending on what the downstream device attached
is using Filled with the current port data speed - N/A: usbDownstreamDataSpeed_na
= 0 - Hi Speed: usbDownstreamDataSpeed_hs = 1 - SuperSpeed: usbDownstream-
DataSpeed_ss =2
Parameters
channel (const unsigned char)- USB downstream channel to check.
Returns
Result object containing the requested value when the results error is set to
NO_ERROR(0)
Return type
Result

getEnumerationDelay ()

Get the inter-port enumeration delay in milliseconds. Millisecond delay in 100mS incre-
ments (100, 200, 300 etc.)
Returns
Result object containing the requested value when the results error is set to
NO_ERROR(0)
Return type
Result

getHubMode ()

Get a bit mapped representation of the hubs mode; see the product datasheet for mode
mapping and meaning. The USB hub mode.
Returns
Result object containing the requested value when the results error is set to
NO_ERROR(0)
Return type
Result

getPortCurrent (channel)

Get the current through the power line for a port. The USB channel current in micro-amps
(1 == 1e-6A).
Parameters
channel (const unsigned char)- The USB sub channel.
Returns
Result object containing the requested value when the results error is set to
NO_ERROR(0)
Return type
Result

3.2,

Python API Reference 475

BrainStem Reference Manual, Release 2.11.1

getPortCurrentLimit (channel)

Get the current limit for the port. The current limit setting.
Parameters
channel (const unsigned char)- USB downstream channel to limit.
Returns
Result object containing the requested value when the results error is set to
NO_ERROR(0)
Return type
Result

getPortError (channel)

Get the current error for the Port. The port mode setting. Mode will be filled with the
current setting. Mode bits that are not used will be marked as don’t care
Parameters
channel (const unsigned char)- USB downstream channel.
Returns
Result object containing the requested value when the results error is set to
NO_ERROR(0)
Return type
Result

getPortMode (channel)

Get the current mode for the Port. The mode is a bitmapped representation of the
capabilities of the usb port. These capabilities change for each of the BrainStem
devices which implement the usb entity. See your device reference page for a
complete list of capabilities. Some devices implement a common bit mapping for
port mode at

ef usbPortMode
The port mode setting. Mode will be filled with the current setting. Mode bits that are
not used will be marked as don’t care
param channel
USB downstream channel.
type channel
const unsigned char
return
Result object containing the requested value when the results error is set to
NO_ERROR(0)
rtype
Result

getPortState (channel)

Get the current State for the Port. The port mode setting. Mode will be filled with the
current setting. Mode bits that are not used will be marked as don’t care
Parameters
channel (const unsigned char)- USB downstream channel.
Returns
Result object containing the requested value when the results error is set to
NO_ERROR(0)
Return type
Result

getPortVoltage (channel)

Get the voltage on the power line for a port. The USB channel voltage in microvolts (1 ==
1e-6V).

476 Chapter 3. API Reference

BrainStem Reference Manual, Release 2.11.1

Parameters
channel (const unsigned char)- The USB sub channel.
Returns
Result object containing the requested value when the results error is set to
NO_ERROR(0)
Return type
Result

getSBUlVoltage (channel)

Get the voltage of SBU1 for a port. The USB channel voltage in micro-volts (1 == 1e-6V).
Parameters
channel (const unsigned char)- The USB sub channel.
Returns
Result object containing the requested value when the results error is set to
NO_ERROR(0)
Return type
Result

getSBU2Voltage (channel)

Get the voltage of SBUZ2 for a port. The USB channel voltage in micro-volts (1 == 1e-6V).
Parameters
channel (const unsigned char)- The USB sub channel.
Returns
Result object containing the requested value when the results error is set to
NO_ERROR(0)
Return type
Result

getSBUEnable (channel)

Get the Enable/Disable status of the SBU The enable/disable status of the SBU
Parameters
channel (const unsigned char)- The USB sub channel.
Returns
Result object containing the requested value when the results error is set to
NO_ERROR(0)
Return type
Result

getUpstreamBoostMode ()

Get the upstream boost mode. Possible modes are 0 - no boost, 1 - 4% boost, 2 - 8%
boost, 3 - 12% boost. The current Upstream boost setting 0, 1, 2, or 3.
Returns
Result object containing the requested value when the results error is set to
NO_ERROR(0)
Return type
Result

getUpstreamMode ()

Get the upstream switch mode for the USB upstream ports. Returns auto, port 0 or port
1. The Upstream port mode.
Returns
Result object containing the requested value when the results error is set to
NO_ERROR(0)
Return type
Result

3.2. Python API Reference 477

BrainStem Reference Manual, Release 2.11.1

getUpstreamState ()

Get the upstream switch state for the USB upstream ports. Returns 2 if no ports plugged
in, 0 if the mode is set correctly and a cable is plugged into port 0, and 1 if the mode is set
correctly and a cable is plugged into port 1. The Upstream port state.
Returns
Result object containing the requested value when the results error is set to
NO_ERROR(0)
Return type
Result

setAltModeConfig (channel, configuration)

Set USB Alt Mode Configuration.
Parameters
* channel (const unsigned char)- The USB sub channel
* configuration (const unsigned int)- The USB configuration to be
set for the given channel.
Returns
An error result from the list of defined error codes in brainstem.result
Return type
unsigned byte

setCClEnable (channel, bEnable)

Set Enable/Disable on the CC1 line.

Parameters
* channel (const unsigned char)- USB channel.
* bEnable (const unsigned char) - State to be set - Disabled: 0 - En-

abled: 1

Returns
An error result from the list of defined error codes in brainstem.result

Return type
unsigned byte

setCC2Enable (channel, bEnable)

Set Enable/Disable on the CC2 line.

Parameters
* channel (const unsigned char)- USB channel.
* bEnable (const unsigned char) - State to be filled - Disabled: 0 -

Enabled: 1

Returns
An error result from the list of defined error codes in brainstem.result

Return type
unsigned byte

setCableF1lip (channel, bEnable)

Set Cable flip. This will flip SBU, CC and SS data lines.

Parameters
* channel (const unsigned char) - The USB sub channel.
* bEnable (const unsigned char) - The state to be set The state to be

set - Disabled: 0 - Enabled: 1

Returns
An error result from the list of defined error codes in brainstem.result

Return type
unsigned byte

478 Chapter 3. API Reference

BrainStem Reference Manual, Release 2.11.1

setConnectMode (channel, mode)

Sets the connect mode of the switch.

Parameters
* channel (const unsigned char)- The USB sub channel.
* mode (const unsigned char)- The connect mode - usbManualConnect

=0 - usbAutoConnect = 1

Returns
An error result from the list of defined error codes in brainstem.result

Return type
unsigned byte

setDataDisable (channel)

Disable only the data lines for a port without changing the state of the power line.
Parameters
channel (const unsigned char)- The USB sub channel.
Returns
An error result from the list of defined error codes in brainstem.result
Return type
unsigned byte

setDataEnable (channel)

Enable the only the data lines for a port without changing the state of the power line.
Parameters
channel (const unsigned char)- The USB sub channel.
Returns
An error result from the list of defined error codes in brainstem.result
Return type
unsigned byte

setDownstreamBoostMode (setting)

Set the downstream boost mode. Boost mode increases the drive strength of the USB
data signals (power signals are not changed). Boosting the data signal strength may help
to overcome connectivity issues when using long cables or connecting through “pogo”
pins. Possible modes are 0 - no boost, 1 - 4% boost, 2 - 8% boost, 3 - 12% boost. This
setting is not applied until a stem.system.save() call and power cycle of the hub. Setting
is then persistent until changed or the hub is reset. After reset, default value of 0% boost
is restored.
Parameters
setting (const unsigned char) - Downstream boost setting 0, 1, 2, or
3.
Returns
An error result from the list of defined error codes in brainstem.result
Return type
unsigned byte

setEnumerationDelay (ms_delay)

Set the inter-port enumeration delay in milliseconds.

Parameters
ms_delay (const unsigned int)- Millisecond delayin 100mS increments
(100, 200, 300 etc.)

Returns
An error result from the list of defined error codes in brainstem.result

Return type
unsigned byte

3.2,

Python API Reference 479

BrainStem Reference Manual, Release 2.11.1

setHiSpeedDataDisable (channel)

Disable only the data lines for a port without changing the state of the power line, Hi-Speed
(2.0) only.
Parameters
channel (const unsigned char)- The USB sub channel.
Returns
An error result from the list of defined error codes in brainstem.result
Return type
unsigned byte

setHiSpeedDataEnable (channel)

Enable the only the data lines for a port without changing the state of the power line, Hi-
Speed (2.0) only.
Parameters
channel (const unsigned char)- The USB sub channel.
Returns
An error result from the list of defined error codes in brainstem.result
Return type
unsigned byte

setHubMode (mode)

Set a bit mapped hub state; see the product datasheet for state mapping and meaning.
Parameters
mode (const unsigned int)- The USB hub mode.
Returns
An error result from the list of defined error codes in brainstem.result
Return type
unsigned byte

setPortCurrentLimit (channel, microamps)

Set the current limit for the port. If the set limit is not achievable, devices will round
down to the nearest available current limit setting. This setting can be saved with a
stem.system.save() call.
Parameters
* channel (const unsigned char)- USB downstream channel to limit.
* microamps (const unsigned int) - The current limit setting.
Returns
An error result from the list of defined error codes in brainstem.result
Return type
unsigned byte

setPortDisable (channel)

Disable both power and data lines for a port.
Parameters
channel (const unsigned char)- The USB sub channel.
Returns
An error result from the list of defined error codes in brainstem.result
Return type
unsigned byte

setPortEnable (channel)

Enable both power and data lines for a port.
Parameters
channel (const unsigned char)- The USB sub channel.

480 Chapter 3. API Reference

BrainStem Reference Manual, Release 2.11.1

Returns

An error result from the list of defined error codes in brainstem.result
Return type

unsigned byte

setPortMode (channel, mode)

Set the mode for the Port. The mode is a bitmapped representation of the capabil-
ities of the usb port. These capabilities change for each of the BrainStem devices
which implement the usb entity. See your device reference page for a complete
list of capabilities. Some devices use a common bit mapping for port mode at
ef usbPortMode
param channel
USB downstream channel to set the mode on.
type channel
const unsigned char
param mode
The port mode setting as packed bit field.
type mode
const unsigned int
return
An error result from the list of defined error codes in brainstem.result
rtype
unsigned byte

setPowerDisable (channel)

Disable only the power line for a port without changing the state of the data lines.
Parameters
channel (const unsigned char)- The USB sub channel.
Returns
An error result from the list of defined error codes in brainstem.result
Return type
unsigned byte

setPowerEnable (channel)

Enable only the power line for a port without changing the state of the data lines.
Parameters
channel (const unsigned char)- The USB sub channel.
Returns
An error result from the list of defined error codes in brainstem.result
Return type
unsigned byte

setSBUEnable (channel, bEnable)

Enable/Disable only the SBU1/2 based on the configuration of the usbPortMode settings.
Parameters
* channel (const unsigned char)- The USB sub channel.
* bEnable (const unsigned char) - The state to be set - Disabled: O -
Enabled: 1
Returns
An error result from the list of defined error codes in brainstem.result
Return type
unsigned byte

setSuperSpeedDataDisable (channel)

Disable only the data lines for a port without changing the state of the power line, Super-
Speed (3.0) only.

3.2,

Python API Reference 481

BrainStem Reference Manual, Release 2.11.1

Parameters

channel (const unsigned char)- The USB sub channel.
Returns

An error result from the list of defined error codes in brainstem.result
Return type

unsigned byte

setSuperSpeedDataEnable (channel)

Enable the only the data lines for a port without changing the state of the power line,
SuperSpeed (3.0) only.
Parameters
channel (const unsigned char)- The USB sub channel.
Returns
An error result from the list of defined error codes in brainstem.result
Return type
unsigned byte

setUpstreamBoostMode (Ssefting)

Set the upstream boost mode. Boost mode increases the drive strength of the USB data
signals (power signals are not changed). Boosting the data signal strength may help to
overcome connectivity issues when using long cables or connecting through “pogo” pins.
Possible modes are 0 - no boost, 1 - 4% boost, 2 - 8% boost, 3 - 12% boost. This setting
is not applied until a stem.system.save() call and power cycle of the hub. Setting is then
persistent until changed or the hub is reset. After reset, default value of 0% boost is
restored.
Parameters
setting (const unsigned char)- Upstream boost setting 0, 1, 2, or 3.
Returns
An error result from the list of defined error codes in brainstem.result
Return type
unsigned byte

setUpstreamMode (mode)

Set the upstream switch mode for the USB upstream ports. Values are usbUpstream-
ModeAuto, usbUpstreamModePort0, usbUpstreamModePort1, and usbUpstreamMode-
None.
Parameters
mode (const unsigned char) - The Upstream port mode.
Returns
An error result from the list of defined error codes in brainstem.result
Return type
unsigned byte

3.2.31 USB System

class brainstem.entity.USBSystem (module, index)
USBSystem Class: The USBSystem class provides high level control of the lower level Port
Class.
getDataHSMaxDatarate ()

Gets the USB HighSpeed Max datarate Current maximum datarate for the USB High-
Speed signals.

482 Chapter 3. API Reference

BrainStem Reference Manual, Release 2.11.1

Returns
Result object containing the requested value when the results error is set to
NO_ERROR(0)

Return type
Result

getDataRoleBehavior ()

Gets the behavior of how upstream and downstream ports are determined. i.e. How do
you manage requests for data role swaps and new upstream connections. Variable to
be filled with an enumerated representation of behavior. Available behaviors are product
specific. See the reference documentation.
Returns
Result object containing the requested value when the results error is set to
NO_ERROR(0)
Return type
Result

getDataRoleBehaviorConfig (buffer length=65536)
Gets the current data role behavior configuration Certain data role behaviors use a list of
ports to determine priority host priority. Length that was actually received and filled.
Parameters
buffer_length - Length of the buffer to be filed
Returns
Result object containing the requested value when the results error is set to
NO_ERROR(0)
Return type
Result

getDataRolelist ()

Gets the data role of all ports with a single call Equivalent to calling Port-
Class::getDataRole() on each individual port. A bit packed representation of the data
role for all ports.
Returns
Result object containing the requested value when the results error is set to
NO_ERROR(0)
Return type
Result

getDataSSMaxDatarate ()

Gets the USB SuperSpeed Max datarate Current maximum datarate for the USB Super-
Speed signals.
Returns
Result object containing the requested value when the results error is set to
NO_ERROR(0)
Return type
Result

getEnabledList ()

Gets the current enabled status of all ports with a single call. Equivalent to calling Port-
Class::setEnabled() on each port. Bit packed representation of the enabled status for all
ports.
Returns
Result object containing the requested value when the results error is set to
NO_ERROR(0)
Return type
Result

3.2. Python API Reference 483

BrainStem Reference Manual, Release 2.11.1

getEnumerationDelay ()

Gets the inter-port enumeration delay in milliseconds. Delay is applied upon hub enumer-
ation. the current inter-port delay in milliseconds.
Returns
Result object containing the requested value when the results error is set to
NO_ERROR(0)
Return type
Result

getModeList (buffer_length=65536)

Gets the current mode of all ports with a single call. Equivalent to calling Port-
Class:getMode() on each port. Length that was actually received and filled.
Parameters
buffer_length - Length of the buffer to be filed
Returns
Result object containing the requested value when the results error is set to
NO_ERROR(0)
Return type
Result

getOverride ()

Gets the current enabled overrides Bit mapped representation of the current override con-
figuration.
Returns
Result object containing the requested value when the results error is set to
NO_ERROR(0)
Return type
Result

getPowerBehavior ()

Gets the behavior of the power manager. The power manager is responsible for budgeting
the power of the system. i.e. What happens when requested power greater than available
power. Variable to be filled with an enumerated representation of behavior. Available
behaviors are product specific. See the reference documentation.
Returns
Result object containing the requested value when the results error is set to
NO_ERROR(0)
Return type
Result

getPowerBehaviorConfig (buffer _length=65536)

Gets the current power behavior configuration Certain power behaviors use a list of ports
to determine priority when budgeting power. Length that was actually received and filled.
Parameters
buffer_length - Length of the buffer to be filed
Returns
Result object containing the requested value when the results error is set to
NO_ERROR(0)
Return type
Result

getSelectorMode ()

Gets the current mode of the selector input. This mode determines what happens and in
what order when the external selector input is used. Variable to be filled with the selector
mode

484 Chapter 3. API Reference

BrainStem Reference Manual, Release 2.11.1

Returns
Result object containing the requested value when the results error is set to
NO_ERROR(0)

Return type
Result

getStatelist (buffer_length=65536)

Gets the state for all ports with a single call. Equivalent to calling PortClass::getState() on
each port. Length that was actually received and filled.
Parameters
buffer_length - Length of the buffer to be filed
Returns
Result object containing the requested value when the results error is set to
NO_ERROR(0)
Return type
Result

getUpstream ()

Gets the upstream port. The current upstream port.
Returns
Result object containing the requested value when the results error is set to
NO_ERROR(0)
Return type
Result

getUpstreamHs ()

Gets the USB HighSpeed upstream port. The current upstream port.
Returns
Result object containing the requested value when the results error is set to
NO_ERROR(0)
Return type
Result

getUpstreamsSs ()

Gets the USB SuperSpeed upstream port. The current upstream port.
Returns
Result object containing the requested value when the results error is set to
NO_ERROR(0)
Return type
Result

resetEntityToFactoryDefaults ()

Resets the USBSystemClass Entity to it factory default configuration.
Returns
An error result from the list of defined error codes in brainstem.result
Return type
unsigned byte

setDataHSMaxDatarate (datarate)

Sets the USB HighSpeed Max datarate
Parameters
datarate (const unsigned int)-Maximum datarate for the USB High-
Speed signals.
Returns
An error result from the list of defined error codes in brainstem.result

3.2,

Python API Reference 485

BrainStem Reference Manual, Release 2.11.1

Return type
unsigned byte

setDataRoleBehavior (behavior)

Sets the behavior of how upstream and downstream ports are determined. i.e. How do
you manage requests for data role swaps and new upstream connections.
Parameters
behavior (const unsigned char) - An enumerated representation of
behavior. Available behaviors are product specific. See the reference docu-
mentation.
Returns
An error result from the list of defined error codes in brainstem.result
Return type
unsigned byte

setDataRoleBehaviorConfig (buffer)

Sets the current data role behavior configuration Certain data role behaviors use a list of
ports to determine host priority.
Returns
An error result from the list of defined error codes in brainstem.result
Return type
unsigned byte

setDataSSMaxDatarate (datarate)

Sets the USB SuperSpeed Max datarate

Parameters
datarate (const unsigned int)- Maximum datarate for the USB Su-
perSpeed signals.

Returns
An error result from the list of defined error codes in brainstem.result

Return type
unsigned byte

setEnabledList (enabledList)

Sets the enabled status of all ports with a single call. Equivalent to calling Port-
Class::setEnabled() on each port.
Parameters
enabledList (const unsigned int) - Bit packed representation of the
enabled status for all ports to be applied.
Returns
An error result from the list of defined error codes in brainstem.result
Return type
unsigned byte

setEnumerationDelay (msDelay)

Sets the inter-port enumeration delay in milliseconds. Delay is applied upon hub enumer-
ation.
Parameters
msDelay (const unsigned int) - The delay in milliseconds to be applied
between port enables
Returns
An error result from the list of defined error codes in brainstem.result
Return type
unsigned byte

486 Chapter 3. API Reference

BrainStem Reference Manual, Release 2.11.1

setModeList (buffer)

Sets the mode of all ports with a single call. Equivalent to calling PortClass::setMode() on
each port
Returns
An error result from the list of defined error codes in brainstem.result
Return type
unsigned byte

setOverride (overrides)

Sets the current enabled overrides

Parameters
overrides (const unsigned int) - Overrides to be setin a bit mapped
representation.

Returns
An error result from the list of defined error codes in brainstem.result

Return type
unsigned byte

setPowerBehavior (behavior)

Sets the behavior of how available power is managed. i.e. What happens when requested
power is greater than available power.
Parameters
behavior (const unsigned char) - An enumerated representation of
behavior. Available behaviors are product specific. See the reference docu-
mentation.
Returns
An error result from the list of defined error codes in brainstem.result
Return type
unsigned byte

setPowerBehaviorConfig (buffer)

Sets the current power behavior configuration Certain power behaviors use a list of ports
to determine priority when budgeting power.
Returns
An error result from the list of defined error codes in brainstem.result
Return type
unsigned byte

setSelectorMode (mode)

Sets the current mode of the selector input. This mode determines what happens and in
what order when the external selector input is used.
Parameters
mode (const unsigned char) - Mode to be set.
Returns
An error result from the list of defined error codes in brainstem.result
Return type
unsigned byte

setUpstream (port)

Sets the upstream port.
Parameters
port (const unsigned char) - The upstream port to set.
Returns
An error result from the list of defined error codes in brainstem.result

3.2,

Python API Reference 487

BrainStem Reference Manual, Release 2.11.1

Return type
unsigned byte
setUpstreamHs (port)

Sets the USB HighSpeed upstream port.
Parameters

port (const unsigned char) - The upstream port to set.
Returns

An error result from the list of defined error codes in brainstem.result
Return type

unsigned byte
setUpstreamSs (port)

Sets the USB SuperSpeed upstream port.
Parameters

port (const unsigned char)- The upstream port to set.
Returns

An error result from the list of defined error codes in brainstem.result
Return type

unsigned byte

3.2.32 Version

Provides version access utilities.

brainstem.version.get_version_string (packed version=None, buffer_length=256)
Gets the version string from a packed version.

Parameters

* packed_version (unsigned int) - If version is provided, it is unpacked and pre-

sented as the version string. Most useful for printing the firmware version currently
installed on a module.

* buffer_length (unsigned short) - The amount of C memory to allocate
Returns
The library version as a string

Return type
str

brainstem.version.unpack_version (packed version)
Unpacks a packed version.
Parameters
packed_version (unsigned int)- The packed version number.
Returns
Returns the library version as a 3-tuple (major, minor, patch)

Return type
str

488 Chapter 3. API Reference

BrainStem Reference Manual, Release 2.11.1

3.3 C++ API Reference

3.3.1 Acroname Modules

USBHub3c

Class

class aUsSBHub3c : public Acroname::BrainStem::Module

Concrete Module implementation of a USBHub3c Allows a user to connect to and control an attached
hub.

Public Types

enum PORT_ID
Port ID

Values:

enumerator kPORT_ID_0
enumerator kPORT_ID_1
enumerator kPORT_ID_2
enumerator kPORT_ID_3
enumerator kPORT_ID_4
enumerator kPORT_ID_5
enumerator kPORT_ID_CONTROL
enumerator kPORT_ID_POWER_C

typedef enum aUSBHub3c::PORT_ID PORT_ID_t
Port ID

3.3. C++ API Reference 489

BrainStem Reference Manual, Release 2.11.1

Public Members

HubClass hub
Hub Class

Acroname::BrainStem::AppClass app[aUSBHUB3C_NUM_APPS]
App Class

Acroname::BrainStem:: PointerClass pointer[aUSBHUB3C_NUM_POINTERS]
Pointer Class

Acroname::BrainStem:: PowerDeliveryClass pd[aUSBHUB3C_NUM_PD_PORTS]
Power Delivery Class

Acroname::BrainStem::RailClass rail[aUSBHUB3C_NUM_RAILS]
Rail Class

Acroname::BrainStem::StoreClass st ore[aUSBHUB3C_NUM_STORES]
Store Class

Acroname::BrainStem::SystemClass system
System Class

Acroname::BrainStem:: TemperatureClass temperature[aUSBHUB3C_NUM_TEMPERATURES]
Temperature Class

Acroname::BrainStem:: TimerClass t imer[aUSBHUB3C_NUM_TIMERS]
Timer Class

Acroname::BrainStem::/2CClass i2¢[aUSBHUB3C_NUM_12C]
12C Class

Acroname::BrainStem::USBClass usb
USB Class

Acroname::BrainStem:: UARTClass uart[aUSBHUB3C_NUM_UART]
UART Class

class HubClass : public Acroname::BrainStem::USBSystemClass
Hub class implementation for use with USBHub3c.

490 Chapter 3. API Reference

BrainStem Reference Manual, Release 2.11.1

Defines
aUSBHUB3C_MODULE 6
USBHub3c module number

aUSBHUB3C_NUM_APPS 4
Number of App instances available

aUSBHUB3C_NUM_POINTERS 4
Number of Pointer instances available

aUSBHUB3C_NUM_STORES 2
Number of Store instances available

aUSBHUB3C_NUM_INTERNAL_SLOTS 12
Store: Number of internal slots instances available

aUSBHUB3C_NUM_RAM SLOTS 1
Store: Number of RAM slot instances available

aUSBHUB3C_STORE_INTERNAL_INDEX 0
Store: Array index for internal store

aUSBHUB3C_STORE_RAM_INDEX 1
Store: Array index for RAM store

aUSBHUB3C_STORE_EEPROM_INDEX 2
Store: Array index for EEPROM store

aUSBHUB3C_NUM_TEMPERATURES 3
Number of Temperature instances available

aUSBHUB3C_NUM_TIMERS 8
Number of Timer instances available

aUSBHUB3C_NUM_USB 1
Number of USB instances available

aUSBHUB3C_NUM_USB_PORTS 8
Number of USB ports available

aUSBHUB3C_NUM_PORTS 8
Number of Ports available

3.3. C++ API Reference

491

BrainStem Reference Manual, Release 2.11.1

aUSBHUB3C_NUM_PD_PORTS 8
Number of PD compatible ports available

aUSBHUB3C_NUM_PD_RULES_PER_PORT 7
Number of PD Rules per port available

aUSBHUB3C_NUM_RAILS 7
Number of Rail instances available

aUSBHUB3C_NUM_I2C 1
Number of 12C instances available

aUSBHUB3C_NUM_UART 1
Number of UART instances available

USBHub3p

Class

class aUsBHub3p : public Acroname::BrainStem::Module

Concrete Module implementation of a aUSBHub3p Allows a user to connect to and control an attached

hub.

Public Types

enum PORT_ID
Port ID 3p

Values:

enumerator kPORT_ID_0

enumerator kPORT_ID_1

enumerator kPORT_ID_2

enumerator kPORT _ID_3

enumerator kPORT_ID_4

enumerator kPORT_ID_5

enumerator kPORT_ID_6

492

Chapter 3. API Reference

BrainStem Reference Manual, Release 2.11.1

enumerator kPORT_ID_7

enumerator kPORT_ID_DWNA

enumerator kPORT_ID_UPO

enumerator kPORT_ID_UP1

enumerator kPORT_ID_CONTROL

typedef enum aUSBHub3p::PORT_ID PORT_ID_t
Port ID 3p

Public Members

HubClass hub
Hub Class

Acroname::BrainStem::AppClass app[aUSBHUB3P_NUM_APPS]
App Class

Acroname::BrainStem:: PointerClass pointer[aUSBHUB3P_NUM_POINTERS]
Pointer Class

Acroname::BrainStem::StoreClass st ore[aUSBHUB3P_NUM_STORES]
Store Class

Acroname::BrainStem::SystemClass system
System Class

Acroname::BrainStem:: TemperatureClass temperature
Temperature Class

Acroname::BrainStem:: TimerClass t imer[aUSBHUB3P_NUM_TIMERS]
Timer Class

Acroname::BrainStem::USBClass usb
USB Class

class HubClass : public Acroname::BrainStem::USBSystemClass
Hub class implementation for use with USBHub3p.

3.3. C++ API Reference 493

BrainStem Reference Manual, Release 2.11.1

Defines
aUSBHUB3P_MODULE 6
USBHub3p module number

aUSBHUB3P_NUM_APPS 4
Number of App instances available

aUSBHUB3P_NUM_POINTERS 4
Number of Pointer instances available

aUSBHUB3P_NUM_STORES 2
Number of Store instances available

aUSBHUB3P_NUM_INTERNAL_SLOTS 12
Store: Number of internal slots instances available

aUSBHUB3P_NUM_RAM SLOTS 1
Store: Number of RAM slot instances available

aUSBHUB3P_NUM_TIMERS 8
Number of Timer instances available

aUSBHUB3P_NUM_USB 1
Number of USB instances available

aUSBHUB3P_NUM_USB_PORTS 8
Number of USB ports available

aUSBHUB3P_NUM_PORTS 12
Number of Prts available

Port State Defines
aUSBHUB3P_USB_VBUS_ENABLED 0
USB VBUS current state

aUSBHUB3P_USB2_DATA_ENABLED 1
USB2 data current state

aUSBHUB3P_USB3_DATA_ENABLED 3
USB3 data current state

494

Chapter 3. API Reference

BrainStem Reference Manual, Release 2.11.1

aUSBHUB3P_USB_SPEED_USB2 11
USB2 speed current state

aUSBHUB3P_USB_SPEED_USB3 12
USBS3 speed current state

aUSBHUB3P_USB_ERROR_FLAG 19

Error indicator for this port

(see ‘Port Errors’ below)

aUSBHUB3P_USB2_BOOST_ENABLED 20
USB2 boost current state

aUSBHUB3P_DEVICE_ATTACHED 23
Device attached indicator for this port

Port State Error Defines
aUSBHUB3P_ERROR_VBUS_OVERCURRENT 0
VBUS overcurrent error

aUSBHUB3P_ERROR_VBUS_BACKDRIVE 1
VBUS backdrive (backpower) error

aUSBHUB3P_ERROR_HUB_POWER 2
Hub power error

aUSBHUB3P_ERROR_OVER_TEMPERATURE 3
Over temperature error

aUSBHUB3P_ERROR_DISCHARGE_ERR 4
For compat with USBHub2x4

aUSBHUB3P_ERROR_SHORT_CIRCUIT 5
Short circuit detected

3.3. C++ API Reference

495

BrainStem Reference Manual, Release 2.11.1

USBHub2x4

Class

class aUSBHub2x4 : public Acroname::BrainStem::Module

Concrete Module implementation of a USBHub2x4 Allows a user to connect to and control an attached
hub.

Public Types

enum PORT_1ID
Port ID 2x4

Values:

enumerator kPORT_ID_0
enumerator kPORT_ID_1
enumerator kPORT_ID_2
enumerator kPORT_ID_3
enumerator kPORT_ID_UPO
enumerator kPORT_ID_UP1

typedef enum aUSBHub2x4::PORT_ID PORT_ID_t
Port ID 2x4

Public Members

HubClass hub
Hub Class

Acroname::BrainStem::AppClass app[aUSBHUB2X4_NUM_APPS]
App Class

Acroname::BrainStem:: PointerClass pointer[aUSBHUB2X4_NUM_POINTERS]
Pointer Class

Acroname::BrainStem::StoreClass st ore[aUSBHUB2X4_NUM_STORES]
Store Class

496 Chapter 3. API Reference

BrainStem Reference Manual, Release 2.11.1

Acroname::BrainStem::SystemClass system
System Class

Acroname::BrainStem:: TemperatureClass temperature
Temperature Class

Acroname::BrainStem:: TimerClass t imer[aUSBHUB2X4_NUM_TIMERS]
Timer Class

Acroname::BrainStem:: USBClass usb
USB Class

class HubClass : public Acroname::BrainStem::USBSystemClass
Hub class implementation for use with USBHub2x4.

Defines
aUSBHUB2X4_MODULE 6
USBHub2x4 module number

aUSBHUB2X4_NUM_APPS 4
Number of App instances available

aUSBHUB2X4_NUM_POINTERS 4
Number of Pointer instances available

aUSBHUB2X4_NUM_STORES 2
Number of Store instances available

aUSBHUB2X4_NUM_INTERNAL_SLOTS 12
Store: Number of internal slots instances available

aUSBHUB2X4_NUM_RAM_SLOTS 1
Store: Number of RAM slot instances available

aUSBHUB2X4_NUM_TIMERS 8
Number of Timer instances available

aUSBHUB2X4_NUM_USB 1
Number of USB instances available

aUSBHUB2x4_NUM_USB_PORTS 4
Number of USB ports available

3.3. C++ API Reference 497

BrainStem Reference Manual, Release 2.11.1

aUSBHUB2x4_NUM_PORTS 6
Number of Ports available

Port State Defines
aUSBHUB2X4_USB_VBUS_ENABLED 0
USB VBUS current state

aUSBHUB2X4_USB2_DATA_ENABLED 1
USB2 data current state

aUSBHUB2X4_USB_ERROR_FLAG 19

Error indicator for this port

(see ‘Port Errors’ below)

aUSBHUB2X4_USB2_BOOST_ENABLED 20
USB2 boost current state

aUSBHUB2X4_DEVICE_ATTACHED 23
Device attached indicator for this port

aUSBHUB2X4_CONSTANT_ CURRENT 24
Constant current mode indicator

Port State Error Defines
aUSBHUB2X4_ERROR_VBUS_OVERCURRENT 0
VBUS overcurrent error

aUSBHUB2X4_ERROR_OVER_TEMPERATURE 3
Over temperature error

aUSBHub2X4_ERROR_DISCHARGE 4
Discharge error

498

Chapter 3. API Reference

BrainStem Reference Manual, Release 2.11.1

USBCSwitch

Class

class ausBCSwitch : public Acroname::BrainStem::Module

Concrete Module implementation of a USBCSwitch Allows a user to connect to and control an attached
switch.

Public Types

enum EQUALIZER_ 3P0O_TRANSMITTER_CONFIGS
Equalizer 3P0 transmitter configs

Values:

enumerator MUX_1db_COM_0db_900mV

enumerator MUX_0db_COM_1db_900mV

enumerator MUX_1db_COM_1db_900mV

enumerator MUX_0db_COM_0db_900mv

enumerator MUX_0db_COM_0db_1100mV

enumerator MUX_1db_COM_0db_1100mv

enumerator MUX_0db_COM_1db_1100mvV

enumerator MUX_2db_COM_2db_1100mV

enumerator MUX_0db_COM_0db_1300mV

enum EQUALIZER 3P0_RECEIVER_CONFIGS
Equalizer 3P0 receiver configs

Values:

enumerator LEVEL_1_3P0

enumerator LEVEL_2_3P0

enumerator LEVEL_3_3P0

3.3. C++ API Reference 499

BrainStem Reference Manual, Release 2.11.1

enumerator LEVEL_4_3P0

enumerator LEVEL_5_3P0

enumerator LEVEL_6_3P0

enumerator LEVEL_7_3P0

enumerator LEVEL_8_3P0

enumerator LEVEL_9_3P0

enumerator LEVEL_10_3P0

enumerator LEVEL_11_3P0

enumerator LEVEL_12_3PO

enumerator LEVEL_13_3P0

enumerator LEVEL_14_3P0

enumerator LEVEL_15_3P0

enumerator LEVEL_16_3P0

enum EQUALIZER 2P0_TRANSMITTER_CONFIGS
Equalizer 2P0 transmitter configs

Values:

enumerator TRANSMITTER_2P0_40mV

enumerator TRANSMITTER_2P0_60mV

enumerator TRANSMITTER_2P0_80mV

enumerator TRANSMITTER_2P0_OmV

enum EQUALIZER_2P0_RECEIVER_CONFIGS
Equalizer 3P0 receiver configs
Values:

500 Chapter 3

. APl Reference

BrainStem Reference Manual, Release 2.11.1

enumerator LEVEL_1_2PO0

enumerator LEVEL_2_2P0

enum EQUALIZER_CHANNELS
Equalizer channels

Values:

enumerator BOTH

enumerator MUX

enumerator COMMON

enum daughtercard_type
Daughter Cards

Values:

enumerator NO_DAUGHTERCARD

enumerator PASSIVE_DAUGHTERCARD

enumerator REDRIVER_DAUGHTERCARD

enumerator UNKNOWN_ DAUGHTERCARD

Public Members

Acroname::BrainStem::AppClass app[aUSBCSWITCH_NUM_APPS]
App Class

Acroname::BrainStem::MuxClass mux
Mux Class

Acroname::BrainStem:: PointerClass pointer[aUSBCSWITCH_NUM_POINTERS]
Pointer Class

Acroname::BrainStem::StoreClass st ore[aUSBCSWITCH_NUM_STORES]
Store Class

Acroname::BrainStem::SystemClass system
System Class

3.3. C++ API Reference 501

BrainStem Reference Manual, Release 2.11.1

Acroname::BrainStem:: TimerClass t imexr[aUSBCSWITCH_NUM_TIMERS]

Timer Class

Acroname::BrainStem:: USBClass usb
USB Class

Acroname::BrainStem::EqualizerClass equalizer[aUSBCSWITCH_NUM_EQ]

Equalizer Class

Defines
aUSBCSWITCH_MODULE 6
USBCSwitch module number

aUSBCSWITCH_NUM_APPS 4
Number of App instances available

aUSBCSWITCH_NUM_POINTERS 4
Number of Pointer instances available

aUSBCSWITCH_NUM_STORES 2
Number of Store instances available

aUSBCSWITCH_NUM_INTERNAL_SLOTS 12
Store: Number of internal slots instances available

aUSBCSWITCH_NUM_RAM SLOTS 1
Store: Number of RAM slot instances available

aUSBCSWITCH_NUM_TIMERS 8
Number of Timer instances available

aUSBCSWITCH_NUM_USB 1
Number of USB instances available

aUSBCSWITCH_NUM_MUX 1
Number of Mux instances available

aUSBCSWITCH_NUM_EQ 2
Number of Equalizer instances available

aUSBCSWITCH_NUM_MUX_CHANNELS 4
Number of Mux channels available

502

Chapter 3. API Reference

BrainStem Reference Manual, Release 2.11.1

Port State Defines

usbPortStateVBUS 0
USB VBUS current state

usbPortStateUSB2A 1
USB2 side A current state

usbPortStateUSB2B 2
USB2 side B current state

usbPortStateSBU 3
SBU current state

usbPortStateSsl1 4
SS1 current state

usbPortStateSs2 5
SS2 A current state

usbPortStateCCl 6
CC1 current state

usbPortStateCC2 7
CC2 A current state

set_usbPortStateCOM_ORIENT_STATUS (var, state) ((var & ~(3 << 8)) | (state << 8))
Common side orientation status

get_usbPortStateCOM_ORIENT_STATUS (var) ((var & (3<<8))>>8)
Common side orientation status

set_usbPortStateMUX_ORIENT_STATUS (var, state) ((var & ~(3 << 10)) | (state << 10))
Mux side orientation status

get_usbPortStateMUX_ORIENT_STATUS (var) ((var & (3 << 10)) >> 10)
Mux side orientation status

set_usbPortStateSPEED_STATUS (var, state) ((var & ~(3 << 12)) | (state << 12))
USB speed status

get_usbPortStateSPEED_STATUS (var) ((var & (3 << 12)) >> 12)
USB speed status

usbPortStateCCFlip 14
CC flip status

usbPortStateSSFlip 15
SS flip status

3.3. C++ API Reference 503

BrainStem Reference Manual, Release 2.11.1

usbPortStateSBUFlip 16
SBU flip status

usbPortStateUSB2Flip 17
USB2 flip status

get_usbPortStateDaughterCard (var) ((var & (3 << 18)) >> 18)
Daughter card status

usbPortStateErrorFlag 20
Error indicator for this port

usbPortStateUSB2Boost 21
USB2 boost current state

usbPortStateUSB3Boost 22
USB3 boost current state

usbPortStateConnectionEstablished 23
Connection established state

usbPortStateCClInject 26
CC1 inject current state

usbPortStateCC2Inject 27
CC2 inject current state

usbPortStateCClDetect 28
CC1 detect current state

usbPortStateCC2Detect 29
CC2 detect current state

usbPortStateCClLogicState 30
CC1 logic current state

usbPortStateCC2LogicState 31
CC2 logic current state

504

Chapter 3. API Reference

BrainStem Reference Manual, Release 2.11.1

Port State Error Defines

usbPortStateO£f£f 0

Indicator for port state off

usbPortStateSideA 1

Indicator for port side A

usbPortStateSideB 2

Indicator for port side B

usbPortStateSideUndefined 3
Indicator for port side undefined

MTM-DAQ-2

Class

class aMTMDAQ2 : public Acroname::BrainStem::Module
Concrete Module implementation of an MTM-DAQ-2 Allows a user to connect to and control an attached

module.

Public Members

Acroname::BrainStem::AnalogClass analog[aMTMDAQ2_NUM_ANALOGS]

Analog Class

Acroname::BrainStem::AppClass app[aMTMDAQ2_NUM_APPS]

App Class

Acroname::BrainStem::DigitalClass digital[aMTMDAQ2 NUM DIGITALS]

Digital Class

Acroname::BrainStem::/2CClass i2c[aMTMDAQ2_NUM_12C]

I12C Class

Acroname::BrainStem:: PointerClass pointer[aMTMDAQ2_NUM_POINTERS]

Pointer Class

Acroname::BrainStem::StoreClass store[aMTMDAQ2_NUM_STORES]

Store Class

Acroname::BrainStem::SystemClass system

System Class

3.3. C++ API Reference

505

BrainStem Reference Manual, Release 2.11.1

Acroname::BrainStem:: TimerClass t imexr[aMTMDAQ2_NUM_TIMERS]
Timer Class

Public Static Functions

static inline const std::list<uint8_t> &getSingleEndedInputRanges (void)
Get list of analog ranges for single-ended inputs.

Return values
std: :1list - analog ranges

static inline const std::list<uint8_t> &getDifferentialInputRanges (void)
Get list of analog ranges for differential inputs.

Return values
std: :1list - analog ranges

static inline const std::list<uint8_t> &getOutputRanges (void)
Get list of analog range outputs.

Return values
std: :list - analog ranges

Defines
aMTMDAQ2_MODULE_BASE_ADDRESS 10
MTM-DAQ-2 module base address

aMTMDAQ2_NUM_ANALOGS 18
Number of Analog instances available

aMTMDAQ2_NUM_ANALOG_INPUTS 16
Analog: Number of Inputs available

aMTMDAQ2_NUM_ANALOG_OUTPUTS 2
Analog: Number of Outputs available

aMTMDAQ2_ NUM_APPS 4
Number of App instances available

aMTMDAQ2_BULK_CAPTURE_MAX_HZ 500000
Bulk Capture Max Hertz

aMTMDAQ2_ BULK_CAPTURE_MIN_HZ 1
Bulk Capture Min Hertz

aMTMDAQ2_ NUM DIGITALS 2
Number of Digital instances available

506 Chapter 3. API Reference

BrainStem Reference Manual, Release 2.11.1

aMTMDAQ2_ NUM_I2C 1
Number of 12C instances available

aMTMDAQ2 NUM_POINTERS 4
Number of Pointer instances available

aMTMDAQ2_ NUM_STORES 2
Number of Store instances available

aMTMDAQ2 NUM_INTERNAL_SLOTS 12
Store: Number of internal slots instances available

aMTMDAQ2 NUM_RAM_SLOTS 1
Store: Number of RAM slot instances available

aMTMDAQ2_ NUM_TIMERS 8
Number of Timer instances available
MTM-EtherStem

Class

class aMTMEtherStem : public aMTMStemModule

Concrete Module implementation of an MTM-EtherStem Allows a user to connect to and control an at-
tached module.

Defines

aMTM_ETHERSTEM MODULE_BASE_ADDRESS alMTM_STEM_MODULE BASE ADDRESS
MTM-EtherStem module base address

aMTM_ETHERSTEM NUM_STORES alMTM_STEM_NUM_STORES
Number of Store instances available

aMTM_ETHERSTEM NUM_STORES alMTM_STEM_NUM_STORES
Number of Store instances available

aMTM_ETHERSTEM_NUM_INTERNAL_SLOTS aMTM_STEM_NUM_INTERNAL _SLOTS
Store: Number of internal slots instances available

aMTM_ETHERSTEM_NUM_INTERNAL_SLOTS aMTM_STEM_NUM_INTERNAL_SLOTS
Store: Number of internal slots instances available

3.3. C++ API Reference 507

BrainStem Reference Manual, Release 2.11.1

aMTM_ETHERSTEM_NUM_RAM SLOTS aMTM _STEM NUM _RAM_SLOTS
Store: Number of RAM slot instances available

aMTM_ETHERSTEM_NUM_RAM SLOTS aMTM _STEM NUM _RAM_SLOTS
Store: Number of RAM slot instances available

aMTM_ETHERSTEM NUM_SD_SLOTS aMTM _STEM _NUM_SD SLOTS
Store: Number of SD slot instances available

aMTM_ETHERSTEM NUM_SD_SLOTS aMTM _STEM _NUM_SD SLOTS
Store: Number of SD slot instances available

aMTM_ETHERSTEM_NUM_A2D aMTM_STEM _NUM_A2D
Number of Analog instances available

aMTM_ETHERSTEM_NUM_APPS aMTM_STEM_NUM_APPS
Number of App instances available

aMTM_ETHERSTEM_BULK_CAPTURE_MAX HZ aMTM STEM BULK CAPTURE MAX HZ
Bulk Capture Max Hertz

aMTM_ETHERSTEM BULK_CAPTURE_MIN_HZ aMTM STEM BULK CAPTURE MIN_HZ
Bulk Capture Min Hertz

aMTM_ETHERSTEM_NUM_CLOCK aMTM _STEM _NUM _ CLOCK
Number of Clock instances available

aMTM_ETHERSTEM NUM_DIG aMTM STEM NUM DIG
Number of Digital instances available

aMTM_ETHERSTEM_NUM_I2C aMTM _STEM _NUM _[2C
Number of 12C instances available

aMTM_ETHERSTEM NUM_POINTERS aMTM STEM NUM_POINTERS
Number of Pointer instances available

aMTM_ETHERSTEM_NUM_SERVOS aMTM _STEM NUM_ SERVOS
Number of RC Servo instances available

aMTM_ETHERSTEM_NUM_SIGNALS aMTM_STEM_NUM_SIGNALS
Number of Signal instances available

aMTM_ETHERSTEM_NUM_OUTPUT_SIGNALS aMTM_STEM_NUM_OUTPUT_SIGNALS
Signal: Number of output signal instances available

508 Chapter 3. API Reference

BrainStem Reference Manual, Release 2.11.1

aMTM_ETHERSTEM_NUM_INPUT_SIGNALS aMTM_STEM_NUM_INPUT_SIGNALS
Signal: Number of input signal instances available

aMTM_ETHERSTEM_NUM_TIMERS aMTM _STEM NUM _TIMERS
Number of Timer instances available

MTM-IO-Serial

Class

class aMTMIOSerial : public Acroname::BrainStem::Module

Concrete Module implementation of an MTM-IO-Serial Allows a user to connect to and control an at-

tached module.

Public Types

enum PORT_ID
Port ID

Values:

enumerator kPORT_ID_0

enumerator kPORT_ID_1

enumerator kPORT_ID_2

enumerator kPORT_ID_3

enumerator kPORT_ID_UPO

typedef enum aMTMIOSerial::PORT_ID PORT_ID_t
Port ID

Public Members

HubClass hub
Hub Class

Acroname::BrainStem::AppClass app[aMTMIOSERIAL_NUM_APPS]
App Class

3.3. C++ API Reference

509

BrainStem Reference Manual, Release 2.11.1

Acroname::BrainStem::DigitalClass digital[aMTMIOSERIAL_NUM_DIGITALS]
Digital Class

Acroname::BrainStem::/2CClass 12e[aMTMIOSERIAL_NUM_12C]
12C Class

Acroname::BrainStem::UARTClass uart[aMTMIOSERIAL_NUM_UART]
UART Class

Acroname::BrainStem:: PointerClass pointer[aMTMIOSERIAL_NUM_POINTERS]
Pointer Class

Acroname::BrainStem::RailClass rail[aMTMIOSERIAL_NUM_RAILS]
Rail Class

Acroname::BrainStem::RCServoClass servo[aMTM_STEM_NUM_SERVOS]
RC Servo Class

Acroname::BrainStem::SignalClass signal[aMTMIOSERIAL_NUM_SIGNALS]
Signal Class

Acroname::BrainStem:: StoreClass store[aMTMIOSERIAL_NUM_STORES]
Store Class

Acroname::BrainStem::SystemClass system
System Class

Acroname::BrainStem:: TemperatureClass temperature
Temperature Class

Acroname::BrainStem:: TimerClass t imex[aMTMIOSERIAL_NUM_TIMERS]
Timer Class

Acroname::BrainStem::USBClass usb
USB Class

class HubClass : public Acroname::BrainStem:: USBSystemClass
Hub class implementation for use with MTMIOSerial.

510 Chapter 3. API Reference

BrainStem Reference Manual, Release 2.11.1

Defines
aMTMIOSERIAL_MODULE_BASE_ADDRESS 8
MTM-IO-Serial module number

aMTMIOSERIAL_NUM_APPS 4
Number of App instances available

aMTMIOSERIAL_ NUM_DIGITALS 8
Number of Digital instances available

aMTMIOSERIAL_ NUM_I2C 1
Number of 12C instances available

aMTMIOSERIAL_NUM_POINTERS 4
Number of Pointer instances available

aMTMIOSERIAL_NUM_RAILS 3
Number of Rail instances available

aMTMIOSERIAL_5VRAILO
Rail: 5v Rail specifier

aMTMIOSERIAL_ADJRAIL1 1
Rail: Adjustable Rail 0 specifier

aMTMIOSERIAL_ADJRAIL2 2
Rail: Adjustable Rail 1 specifier

aMTMIOSERIAL_ MAX_MICROVOLTAGE 5000000
Rail: Max voltage in microvolts

aMTMIOSERIAL_ MIN_MICROVOLTAGE 1800000
Rail: Min voltage in microvolts

aMTMIOSERIAL_NUM_SERVOS 8
Number of RC Servo instances available

aMTMIOSERIAL_NUM_SIGNALS 5
Number of Signal instances available

aMTMIOSERIAL_NUM_OUTPUT_SIGNALS 4
Signal: Number of output signal instances available

3.3. C++ API Reference

511

BrainStem Reference Manual, Release 2.11.1

aMTMIOSERIAL_NUM_INPUT_SIGNALS 5
Signal: Number of input signal instances available

aMTMIOSERIAL_NUM_STORES 2
Number of Store instances available

aMTMIOSERIAL_ NUM_INTERNAL_SLOTS 12
Store: Number of internal slots instances available

aMTMIOSERIAL NUM_RAM SLOTS 1
Store: Number of RAM slot instances available

aMTMIOSERIAL_NUM_TIMERS 8
Number of Timer instances available

aMTMIOSERIAL_NUM_UART 4
Number of UART instances available

aMTMIOSERIAL_ NUM _USB 1
Number of USB instances available

aMTMIOSERIAL_ NUM_USB_PORTS 4
Number of USB ports available

aMTMIOSERIAL_NUM_PORTS 5
Number of Ports available

aMTMIOSERIAL_ USB_NUM_CHANNELS 4
Number of channels available

aUSB_UPSTREAM CONFI